
MANAGEMENT SCIENCE
Vol. 54, No. 10, October 2008, pp. 1774–1791
issn 0025-1909 �eissn 1526-5501 �08 �5410 �1774

informs ®

doi 10.1287/mnsc.1080.0887
©2008 INFORMS

Estimating the Influence of Fairness on
Bargaining Behavior

Arnaud De Bruyn
ESSEC Business School, 95000 Cergy, France, debruyn@essec.fr

Gary E. Bolton
Smeal College of Business, Pennsylvania State University, University Park, Pennsylvania 16802,

gbolton@psu.edu

The strength of bargainers’ preferences for fair settlements has important implications for predicting nego-
tiation outcomes and guiding bargaining strategy. Existing literature reports a few calibration exercises

for social utility models, but the predictive accuracy of these models for out-of-sample forecasting remains
unknown. Therefore, we investigate whether fairness considerations are stable enough across bargaining situa-
tions to be quantified and used to forecast bargaining behavior accurately. We develop a model that embeds a
preference for fair treatment in a quantal response framework to account for noise and experience. In addition,
we estimate preference for fairness (willingness to pay) using the simplest, one-round version of sequential
bargaining games and then employ it to perform out-of-sample forecasts of multiple-round games of various
lengths, discount factors, pie sizes, and levels of bargainer experience. Except in circumstances in which the
bargaining pie is very small, the fitted model has significant and substantial out-of-sample explanatory power.
The stability we find implies that the model and techniques might ultimately be extended to estimates of the
influence of fairness on field negotiations, as well as across subpopulations.
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1. Introduction
Although bargainers commonly demand fair settle-
ments, estimating their preferences for fairness has
proven difficult, largely because demands for fairness
are easily confounded with other strategic objectives
of the negotiator. Thus, it can be difficult to discern
whether fairness preferences shape the negotiation or
whether the negotiation shapes fairness preferences.
We develop a strategic model of bargainer behavior

that includes both fairness and monetary preferences
and investigate the model’s out-of-sample forecast-
ing properties. We find that the estimates of fairness
preferences obtained in one bargaining situation are
indicative of bargainer behavior in other situations,
where strategic parameters such as time cost, stake,
and length of negotiations differ. By demonstrating
both a method for estimating fairness preferences and
the stability of the estimates obtained, with further
research, it may be practical to quantify and embed
fairness preferences into sales or negotiation decision
support systems.1

Several studies include calibration exercises for
social utility models (e.g., Goeree and Holt 2000,

1 Our approach is in line with the research agenda for fairness pro-
posed by Narasimhan et al. (2005).

Costa-Gomes and Zauner 2001, Fehr and Schmidt
1999, Bolton and Ockenfels 2000, Charness and Rabin
2002). Our study differs from these in that we fit an
ultimatum game in an attempt to extend the model to
out-of-sample estimates for other bargaining games,
which in turn enables us to test the stability of will-
ingness to pay for fair treatment across different bar-
gaining environments. Our research goals thus are
threefold:
1. Demonstrate that preference models that incor-

porate fairness considerations explain bargaining
behavior better than traditional preference models;
2. Explore whether a social utility model calibrated

on one bargaining data set can make reliable, out-
of-sample forecasts in bargaining environments with
different characteristics; and
3. Compare the fit obtained from alternative speci-

fications of the preference function.
The remainder of this paper is organized as follows:

In §2, we describe the structure of bargaining games,
as well as the data we use for both in-sample fit and
out-of-sample exploration. Then, in §3, we lay out the
equity–reciprocity–competition (ERC) model (Bolton and
Ockenfels 2000) that we employ to fit the data. Next,
in §4, we estimate the ERC model with the Roth et al.
(1991) ultimatum game data and, in §5, use that model
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to obtain out-of-sample estimates for multiple-round
bargaining games. The model provides satisfactory fit
along several dimensions, including first-offer behav-
ior, rejection behavior, disadvantageous counteroffers,
experience trends, and empirical regularities. In §6,
we check the robustness of our proposed model’s per-
formance with respect to (1) alternative specifications
of the fairness component of the model, (2) alterna-
tive fits using data from two- and three-round games,
and (3) a three-person bargaining situation that stress-
tests the model according to the presumed fair stan-
dard and an extreme settlement outcome, unobserved
in two-person sequential bargaining games. In §7, we
conclude and discuss the implications of our research.

2. Sequential Bargaining Game Data
2.1. Sequential Bargaining Games
Sequential bargaining involves an offer–counteroffer
format, common to many negotiations. In a sequential
bargaining game, a buyer � and a seller � seek to split
a pie of c units. Conceptually, this pie represents the
difference between the buyer’s and the seller’s reser-
vation price (e.g., Samuelson 1980); any offer between
these two limits provides a positive surplus to both
bargainers. The negotiation consists of n rounds. In
odd rounds, � chooses x of the pie to offer �, keeping
c − x for self. If � accepts, the pie is divided accord-
ingly, but if � rejects the offer, the pie shrinks accord-
ing to the discount factors (�����), which represent the
costs of a rejection. If �� �= ��, the pie is shrinking at a
faster pace for one player than for the other, meaning
that the consequences of rejecting an offer vary across
players. In even rounds, the roles reverse, so � makes
the offer. When they cannot reach an agreement after
n rounds, both bargainers receive nothing.
An ultimatum game refers to a single-round ver-

sion of this game, whereas a truncation game consists
of two rounds, in which � must accept any second-
round offer. Finally, the three-person ultimatum game
is a variant of the one-round version, such that one
player offers a split of the pie to three participants,
the second player either accepts or rejects that offer,
and a third player (the dummy) has nothing to say.
Selfish game theory analysis assumes that each bar-

gainer prefers more money to less, with no fairness
considerations. The selfish (subgame perfect) equi-
librium is constructed by backward induction. To
illustrate, suppose the bargaining pie equals $10. Con-
sider first the ultimatum game. Because � prefers
more money, � should offer the smallest unit possi-
ble, say $1, which � should accept. Building on this,
consider a two-round negotiation, and observe that
the second round is an ultimatum game in which � is
the proposer. If the game goes to the second round,
in equilibrium, � offers $1. Knowing this offer will

come, � needs to offer an amount in the first round
just slightly larger than � can expect in round 2. Con-
sequently, the game should end in round 1 with �
receiving �·

�10 and � receiving (1− ���10. A similar
inductive technique can construct the equilibrium for
any n-round game.
Fairness enters the picture because of the system-

atic ways in which actual play deviates from the self-
ish equilibrium. For example, first-round offers tend
to deviate toward greater equity. In addition, more
inequitable (but closer to equilibrium) offers often
get rejected. Rejections in multiple-round games often
prompt disadvantageous counteroffers, that is, the
rejection of an offer, followed by a counteroffer that
gives the proposer less in absolute terms than the
original offer would have. As we discuss below, the
extent of these deviations varies greatly depending on
the version of the game, the number of rounds, the
discount factors, and so forth.

2.2. Sequential Bargaining Data
The data we use for our investigation encompass
all sequential bargaining game studies included in
the “Bargaining Experiments” chapter of the Hand-
book of Experimental Economics (Roth 1995). Altogether,
there are 2,726 observations from 1,037 participants,
collected in 21 different experimental conditions by
seven distinct research teams in seven countries
on three continents. These influential studies have
inspired a host of research in a variety of directions.
Two additional attributes make this collection of data
particularly attractive for our purposes. First, sequen-
tial bargaining not only represents a major paradigm
for the study of bargaining in management literature2

but also offers a simple and unified theoretical struc-
ture, which assists our efforts to fit all the data to a
single model. Second, the diversity of game parame-
terizations encompassed by these data sets provides a
rich test bed for challenging a model of fairness pref-
erences. The role of fairness was a central point of
contention among these studies, and each study can
be considered a robustness test of the claims made by
the preceding studies in the set.
Table 1 illustrates the variability within the Hand-

book sequential bargaining studies along a number
of dimensions, starting with game parameteriza-
tion. Monetary pie sizes, indicative of the incentives
offered for subject participation, differ substantially
across experiments and, because of the international
nature of the data set, were offered in a variety of
currencies. In addition, the number of rounds per

2 Among many examples, Rapoport et al. (1995) use such mecha-
nisms to analyze the influence of one-sided, incomplete informa-
tion in bargaining situations, and Gächter and Riedl (2005) study
moral property rights and the influence of infeasible claims on
negotiations.
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game varies from one to five. Discount factors used
also vary across the feasible range, from 0.1 to 0.9.
(The three-person ultimatum game studied by Güth
and van Damme 1998, also listed in Table 1, will be
used in a robustness test of the model in §6.)
Table 1 also illustrates the diversity in experimen-

tal designs. First, the number of treatments that each
experiment performed varies greatly; Ochs and Roth
(1989) investigate the most in this regard. Second, a
correspondingly wide variation appears in the num-
ber of subjects sampled (implicit in the table). For
example, the Roth et al. (1991) study took place across
four countries. Multiple-round studies take place in
England, Germany, and the United States; Güth and
van Damme (1998) conduct their study in The Nether-
lands. Third, the amount of experience with the game
(i.e., times played) varies from 1 to 10 games. In all
cases though, bargainers play with a given partner
only once. Table 1 also displays the selfish equilib-
rium first offers/settlements. They vary from nearly
0% to 90% of the pie allocated to �. Selfish equilibrium
also predicts that no rejection occurs in response to a
positive offer.
Taken together, these studies provide a challeng-

ing test for an out-of-sample forecasting exercise,
especially in terms of the variability in the data.
Table 1 lists three measures of bargaining behavior
reported in these studies and forecasted in this paper.
Average first offers in sequential bargaining games
range from 27% to 65%; rejection rates range from
5% to 62%; and disadvantageous counteroffers span
0%–100% (i.e., an offer is rejected and eventually fol-
lowed by a counteroffer that leads to a lower payoff
in absolute terms). This variability occurs even across
games that share the same structure. For example,
Binmore et al. (1985) and Neelin et al. (1988) both
run two-round bargaining games with identical (0.25,
0.25) discount factors, yet the former reports a much
higher average first offer (0.416 versus 0.274)—a find-
ing that our study replicates and that we explain by
the difference in pie sizes.
In addition, selfish equilibrium offers little help in

explaining the differences across studies. In Figure 1,
we depict a comparison between the observed aver-
age opening offers in these studies and the selfish
equilibrium prediction (labels in the figure mirror
labels in Table 1). The observed average opening offers
for multiple-round games vary noticeably (27%–67%),
though not by as much as predicted (10%–90%). We
also note a strong first-mover advantage (cf. one
Bolton truncation game—which we replicate below).
Regressing the observed average opening offers on
those predicted by selfish equilibrium yields the fol-
lowing results (two-sided p-values in parentheses):

Obs
 = 0
234 Pred
 + 0
334
�0
006� �0
000� 
 (1)

Figure 1 Predicted First Offers Across Multiple-Round Games,
Observations vs. Subgame Perfect Model
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Notes. The solid line in the graph is the regression line. See Table 1 for
treatment label interpretations.

That is, selfish equilibrium explains only 24.0% of
the variance in observed opening offers. Moreover,
we easily reject the hypothesis that the coefficient of
PREDICTED equals 1 (one-tailed p < 0
001). A bias
toward higher-than-predicted offers is clearly evident
in the intercept term of 0.334.
Several of the studies we investigate find trends in

the opening offers, across repeated plays of the game
(also see Roth and Erev 1995). In some cases the offers
tend to move toward the selfish equilibrium whereas
in others they tend to move away. Our analysis indi-
cates that, in most cases, the trend is toward the equi-
librium offers implied by fairness preferences, specif-
ically, the ERC equilibrium that we describe next.

3. The Model
Models that incorporate a fixed preference for fair-
ness generally fit with ordinal regularities in the data,
though to date no model claims a satisfactory quan-
titative fit. We adopt Bolton and Ockenfels’s (2000)
ERC specification3 as the foundation of our model;
ERC hypothesizes that bargainers have preferences
over relative payoffs (fairness) as well as absolute
payoffs (pecuniary). Bargainers’ utility increases as
the absolute payoff increases, but it diminishes as
their relative payoff deviates from the fair standard.
In line with Zwick and Chen (1999), we assume that

3 In §6, we explore the Fehr–Schmidt preference specification as a
comparison.
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Table 1 Experimental Designs and Observations—Average First Offers, Rejection Rates, and Disadvantageous Counteroffers—for All Bargaining
Studies in the Sample

Discount Times First GT Rejection Disadvantag.
Experiment Initials No. Pie size Rounds factors Subjects played Obs. offer predict. rate counteroffers

Roth et al. (1991)a�b RPOZ 1 $10 1 n/a 250 10 1,250 0.395 0.001 0.272 (340/1,250) n/a

Binmore et al. (1985)c BSS 1 100 pence 2 (0.25, 0.25) 163 1 81 0.416 0.250 0.148 (12/81) 0.750 (9/12)

Güth and Tietz (1988)d GT 1 5 to 35 DM 2 (0.10, 0.10) 42 1 21 0.276 0.100 0.190 (4/21) 0.750 (3/4)
2 5 to 35 DM 2 (0.90, 0.90) 42 1 21 0.440 0.900 0.619 (13/21) 0.000 (0/13)

Neelin et al. (1988)e NSS 1 $5 2 (0.25, 0.25) 80 1 40 0.265 0.250 0.225 (9/40) 0.556 (5/9)
2 $5 3 (0.50, 0.50) 80 1 40 0.472 0.250 0.050 (2/40) 0.500 (1/2)
3 $5 5 (0.34, 0.34) 80 1 40 0.320 0.250 0.125 (5/40) 0.400 (2/5)
4 $15 5 (0.34, 0.34) 30 4 60 0.348 0.250 0.167 (7/60) 0.857 (6/7)

Ochs and Roth (1989) OR 1 $30 2 (0.40, 0.40) 20 10 100 0.399 0.400 0.100 (10/100) 0.600 (5/10)
2 $30 2 (0.60, 0.40) 20 10 100 0.482 0.400 0.150 (15/100) 1.000 (15/15)
3 $30 2 (0.60, 0.60) 16 10 80 0.471 0.600 0.187 (15/80) 0.733 (11/15)
4 $30 2 (0.40, 0.60) 20 10 100 0.458 0.600 0.200 (20/100) 0.550 (11/20)
5 $30 3 (0.40, 0.40) 20 10 100 0.429 0.240 0.120 (12/100) 1.000 (12/12)
6 $30 3 (0.60, 0.40) 20 10 100 0.443 0.160 0.140 (14/100) 0.857 (12/14)
7 $30 3 (0.60, 0.60) 18 10 90 0.449 0.235 0.144 (13/90) 0.462 (6/13)
8 $30 3 (0.40, 0.60) 18 10 90 0.453 0.350 0.289 (26/90) 0.885 (23/16)

Bolton (1991)f B 1 $12 2 (0.67, 0.33) 16 8 64 0.378 0.333 0.188 (12/64) 0.833 (10/12)
2 $12 2 (0.33, 0.67) 14 7 49 0.476 0.666 0.204 (9/49) 0.200 (2/9)
3 $12 Trunc. (0.67, 0.33) 16 8 64 0.384 0.333 0.391 (25/64) 0.960 (24/25)
4 $12 Trunc. (0.33, 0.67) 16 8 64 0.678 0.666 0.266 (17/64) 0.000 (0/17)

Güth and van Damme GvD y DG 24 Three-person n/a 36 6 72 0.276 0.042 0.097 (7/72) n/a
(1998)b�g 0.065 0�042

aNumbers reported are aggregations of four-treatment run, respectively, in Israel, Japan, Slovenia, and the United States. Payoffs are in local currency; size
of pie outside of the United States so that “purchasing power on the high side of $10.”

bIn these games, rejections led automatically to disagreement.
cData reported for Game A. Game B of the experiment solicited first offers but was not actually played and hence is not reported.
dThe 42 subjects played both games, reversing roles in between. Pie sizes and discount factors were assigned at random across the two games. In this

study, a disadvantageous counteroffer automatically led to the disagreement outcome.
eThe same 80 subjects participated in the first three games.
fFor the truncation games, the second-period responder was restricted to accepting the offer.
gTop number refers to mean offer to the responder, and the bottom number refers to mean offer to the dummy. Minimum offer allowed: 5 tokens to each

player (out of 120).

“fairness” has a price and aim to estimate it. Thus,
bargainers reject extreme offers if the expected con-
sequence is less than their willingness to pay, which
depends on the parameters of the game. We inves-
tigate a simple version of the model that estimates
the average trade-off bargainers face between fairness
and material gain.
To account for experience effects and noise in

behavior, we insert ERC preferences into a quan-
tal response equilibrium framework (McKelvey and
Palfrey 1995). Most choice theories proposed in psy-
chology assume that choice behavior is probabilistic
(e.g., Luce 1959). Quantal response permits “mis-
takes” with respect to the optimal decision. The
working hypothesis behind our model is that noise
diminishes with experience, moving behavior closer
to the static ERC equilibrium. We emphasize that we
do not consider the quantal response framework to
be a model of learning; rather, we think of it as a rel-
atively straightforward technique for accounting for
noise and experience. Finally, our model supposes
that “certainty of choice” is greater with larger stakes.

3.1. The ERC Preference Function
The utility function we use is similar to that suggested
by Bolton and Ockenfels (2000) but is restricted to the
kind of asymmetry suggested by Bolton’s (1991) com-
parative bargaining model. Specifically,

U���=



c

(
� − b

2

(
� − 1

2

)2)
if � < 1/2�

c� if � ≥ 1/2�
(2)

where c is the size of the pie, � is the proportion
of the pie the player receives, and b measures the
relative importance of any deviation from an equi-
table allocation. The absolute and relative payoffs are
additively separable, such that relative payoff entails
an asymmetric loss function, with no loss (0) when
the player obtains half or more of the bargaining
pie (i.e., the two-person game’s fair standard is an
equal division). The marginal utility of the relative
component grows greater as the player’s share drops
farther below half. The function contains one fitted
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parameter, b, whose value likely varies across differ-
ent players, though we interpret our estimate as the
population average. Finally, U��� ranges between −�
�if b=� and � < 1/2� and c.
The asymmetry of the utility function refers to bar-

gaining game data, not the character of the utility
function per se. Some researchers refer to bargaining
games as games of negative reciprocity because the
bargainers’ tendency to reject unfair offers dominates
the tendency to make fair offers, in the sense that
the former becomes the major influence on proposers’
offers (e.g., Forsythe et al. 1994). The concept of nega-
tive reciprocity also links to the idea of envy discussed
in management literature (Boiney 1995). As we show
below, it is difficult to distinguish the completely
asymmetric formulation of Equation (2) statistically
from symmetric formulations, and the asymmetric
formulation provides better out-of-sample forecasts
than a strictly symmetric formulation.
In our formulation, the size of the bargaining pie c

does not affect the weights that a bargainer gives
to relative versus absolute payoffs. That is, players
remain driven in the same proportion by absolute
and relative payoffs regardless of pie sizes, though a
player prefers a given share from a larger pie more
than from a smaller one. Nevertheless, in this model,
pie size influences decisions.

3.2. Decision-Making Framework: Quantal
Response

For the sake of exposition, we cast our discussion in
termsoftheultimatum game; an extension to multiple-
round sequential offer games is straightforward.

3.2.1. Responder’s Decision. Let P���i� be the
cumulative probability that the responder � accepts
an offer for a proportion �i of the pie. By definition,
P���i� ∈ �0�1� for all i. P���i� can be expressed by a
logit function:

P���i�=
e��
U��i�

e��
U�
� + e��
U��i�
= e��
U��i�

1+ e��
U��i�
� (3)

where U�
� and U��i� are the utilities of rejecting or
accepting the offer (indiced i), respectively, calculated
from Equation (2). A rejection shrinks the size of the
pie to c= 0, so U�
�= 0 for all �i.
We refer to �� > 0 as the coefficient of certitude,

such that �� indicates the players’ choice consistency.
As �� → �, if U��i� > U�
�, then P���i� → 1; how-
ever, if U��i� < U�
�, then P���i� → 0. That is, the
larger ��, the greater is the probability that the respon-
der follows a strategy that produces the highest util-
ity. At the other extreme, if �� = 0, there is an equal
chance the responder will accept or reject the offer,
independent of the actual value of �i, indicating
that offers get accepted or rejected arbitrarily. Vari-
ous experiments show that players can be inconsistent

over time, accepting an offer in one game but refus-
ing a better offer in another. The probabilistic nature
of the decision rule, introduced when �� takes a rela-
tively small value, is consistent with this phenomenon
and creates some uncertainty about which strategy
the same player will follow over time.
3.2.2. Proposer’s Decision. Let P���i� be the cum-

ulative probability that the proposer � makes an offer
of �i. By definition,

∑I
i=0 P���i� = 1. Consistent with

the responder’s decision model, the proposer’s deci-
sion to offer �i (and keep 1−�i for self) follows a logit
distribution:

P���i�=
e��
E�U�1−�i��∑I
j=1 e

��
E�U�1−�j ��
= e��
P���i�
U �1−�i�∑I

j=1 e
��
P���j �
U �1−�j �

� (4)

where E�U�1−�i�� is the expected utility of offering �i

to the responder. Consistent with the perfect Bayesian
equilibrium solution concept, we suppose that pro-
posers know the true probability with which respon-
ders will accept any particular offer, so the expected
utility of an offer �i equals P���i� ·U�1−�i�.
It then follows that

∑
i P���i� = 1, and offers with

the highest expected utilities should be chosen more
often. Again, as �� → �, proposers systematically
make an offer �i that procures the highest expected
utility. However, if �� = 0, P���i� = P���j� for all i
and j .
3.2.3. Modeling the Coefficient of Certitude. We

model the coefficient of certitude as

�� = � ′
��1+ �1g� (5)

and
�� = � ′

��1+ �1g�� (6)
where � ′

� and � ′
� are the base decision parameters

for players � and �, respectively, � ′
1 is the experience

trend, and g is the number of games played. Param-
eters vary across player roles, because the nature of
their decisions differ substantially (e.g., how much
to offer versus accept or reject). Because coefficients
of certitude tend to increase mechanically with the
number of options available, we intuitively expect ��
(one-of-many decision) to be greater than �� (binary
decision). We also discount the coefficient of certitude
according to the amount of experience the bargainer
has, such that the decision parameter, and decision
certainty, increases with experience. Moreover, we
assume �1 to be identical for � an �, and both play-
ers’ behavior changes at a similar rate. Although this
assumption may not hold, it makes the model more
parsimonious. In multiple-round games, players can
make counteroffers and thereby switch roles during
a game; assuming a constant rate of learning across
roles simplifies the model tremendously.4

4 We also tested whether the model provides a better fit if we esti-
mate two rates of learning. The differences are not significant at
p < 0
05.
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As Equations (2)–(4) reveal, increasing the size of
the pie has the same effect as increasing the coef-
ficient of certitude. Therefore, the model structure
clearly conveys that players select those actions with
the greatest expected rewards more frequently when
the size of the pie is larger; players’ decisions should
be more consistent and less erratic when the game’s
stakes are higher.

4. Fitting the Model to Ultimatum
Game Data

4.1. Selecting a Data Set to Calibrate
the Preference Model

In terms of model calibration, the Roth et al. (1991)
ultimatum game experiment offers several features
that make it nearly ideal for fitting the model ini-
tially and then forecasting the sequential bargaining
games out of sample. First, bargainers play repeat-
edly, which we need to estimate experience effects
(which Roth et al. 1991 find). Second, their paper
represents one of the largest ultimatum game stud-
ies, with some 1,350 observations, that includes many
observations per round. We fit our model using max-
imum likelihood estimation, and desirable asymp-
totic properties are justified only in large sample
situations (Eliason 1993). Third, Roth et al. (1991)
gather their data from four countries (Israel, Japan,
Slovenia, and the United States) and find modest dif-
ferences in bargainer behavior across countries. Data
for the multiple-round games come from three differ-
ent countries (Germany, Great Britain, and the United
States). Our model does not control for cultural dif-
ferences, but fitting it with a multi-country data set
should avoid bias in the estimates, which we would
expect with single-country data.

4.2. Estimating the Parameters of the Model from
the Ultimatum Game Data

The model contains four parameters to be esti-
mated: b, the unique parameter of the utility function;
� ′
� and � ′

�, the two base decision parameters; and �1,
the experience trend parameter. The game design
determines the other parameters, namely, c and g.
We fit the model to the multi-country bargaining

experiment conducted by Roth et al. (1991) using
maximum likelihood estimation. Because we assume
nothing about the underlying process that gener-
ated the data, we estimate the standard deviations
using nonparametric bootstrap variance estimation
(see Davison and Hinkley 1997). Bootstrap variance
estimation also enables us to estimate the standard
deviation of the log-likelihood, which we use subse-
quently to compare the different model specifications.

The parameter estimates we obtain are as follows
(standard deviations in parentheses):

b= 6
692 � ′
� = 0
690 � ′

� = 0
280 �1 = 0
065
�0
740� �0
073� �0
027� �0
016�




All parameters have the expected sign and are sig-
nificant at p < 0
01. The model predicts that the aver-
age offer will be 39.2% of the pie, with an average
rejection rate of 27.5%. The corresponding actual
observations are 39.5% and 27.2%. Student t-tests
of these two measures at p < 0
05 cannot reject the
model. The log-likelihood is −2�694 (s.d. 44.8), and
the correlations between the observations and predic-
tions are high, with R� = 0
898 and R� = 0
972. We
depict the fit in Figure 2.
In the next two figures, we display how experience

affects both the mean opening offers and rejection
rates. Figure 3 reports the first-offer distributions
(model versus observations) in the first versus the
last rounds of the experiment, after some experience.
According to the model, offers tend to tighten around
40% because of the reduction in the amount of error
that proposers make in determining the optimal offer,
given the population probability of rejection.
Figure 4 reports the average rejection rate during

the 10 rounds of the game. Rejection rates reach their
lowest levels during the last rounds, a trend effec-
tively captured by the model (which attributes this
change to the more generous offers that proposers
tend to make as they gain experience).
Recall that the ERC model tested here assumes

perfect asymmetry with respect to the relative pay-
off; specifically, a bargainer cares only about fairness
for self. This is not to say that we have evidence
against caring about fairness toward others. The log-
likelihood of the asymmetric model is −2�694, with
a standard deviation of 44.8 (bootstrap variance esti-
mate). The log-likelihood of the model with perfect
symmetry is −2�651, with a standard deviation of
32.3. Although the fit statistically improves at the mar-
gin (p < 0
1), this symmetric specification probably
captures noise in the data,5 so we retain the original,
asymmetric model. As we reveal in §6, there are sev-
eral reasons to prefer it to a symmetric one.

5 For example, some participants offer the entire pie to the respon-
der, especially during their first play, and the latter reject the offer.
Although this kind of behavior might be explained by very strong
fairness concerns on both sides (preferring receiving nothing than
an unfair share), it is more likely that some participants were
confused about what they had to write down (i.e., the share they
offered to keep or the share they offered to give) the first time
they played the game. The asymmetric specification suggests very
low probabilities for these events, so they affect the log-likelihood
function significantly. Removing anomalies from the data leads to
no differences in the likelihoods.
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Figure 2 Probability That the Proposer Makes an Offer of �i (Left) and Probability That the Responder Rejects Such an Offer (Right),
Observations vs. ERC Model
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Source. Roth et al. (1991).

5. Out-of-Sample Fit to
Multiple-Round Sequential
Bargaining Games

5.1. Procedure
In computing out-of-sample forecasts, the specific
value of the coefficient of certitude in any given deci-
sion varies with the type of decision made, not with
the player who makes it. That is, when a player makes
an offer (or counteroffer), he faces a one-option-out-
of-many kind of decision and takes a coefficient of
certitude of � ′

�; when he responds to an offer (or coun-
teroffer), he faces a binary decision and takes a coef-
ficient of certitude of � ′

�.
We estimate the solutions by backward induction.

Specifically, we build a full decision tree in which
each node represents a decision (“make an offer of x”
or “accept/reject the offer”) and each leaf has an
associated probability of occurrence. We first com-
pute the utilities and associated choice probabilities
for each end leaf, whose actual utilities are provided
by the model. To compute the expected utilities and
choice probabilities for parent nodes, we use back-
ward induction and continue until we reach the first
node of the tree. We average the forecasts of repeated
games over an equal number of games (with an expe-
rience trend) as in the comparison experiment.
In the appendix, we provide a detailed account-

ing of the observations and associated predictions.
Finally, we examine the opening offers, rejection
rates of opening offers, disadvantageous counterof-
fers, learning trends, and other regularities reported
by various authors in previous studies.

5.2. Opening Offers
Figure 5 plots predicted average opening offers
against actual observations in each multiple-round
study. The figure also plots the associated regression
line.

A perfect fit is along the 45 line. We can see that the
model fits these data quite well. Specifically, regress-
ing the observations on predictions, we find (two-
sided p-values in parentheses):

Obs
 = 1
517 Pred
 − 0
214
�0
000� �0
137� 
 (7)

The estimated coefficient for PREDICTED is 1.517,
and we cannot reject a model that restricts this value
to 1 (F -test, p = 0
232). The small intercept term is
not significant at p < 0
1 and indicates little in the
way of bias in the estimates. We judge the amount of
variability explained as good (R2 = 0
596), given the
simplicity of the model and the great variety of bar-
gaining parameters in the sample. Furthermore, the
results are robust to other estimation approaches (see
the online appendix, provided in the e-companion,6

for more details).
If we drop the extreme observation (truncation

game), the regression estimate is (R2 = 0
291; two-
sided p-values in parentheses):

Obs
 = 1
069 Pred
 − 0
033
�0
021� �0
852� 
 (8)

The model captures several regularities that were
noted by the authors of the sample studies. In Table 1,
as Ochs and Roth (1989) note, opening offers tend to
be higher than the selfish equilibrium. This regular-
ity can be observed in 14 of the 19 observations and
is well captured by the model (predictive accuracy:
93%, p < 0
01). Opening offers also tend to be less
than half the pie, as both observed and correctly pre-
dicted in 18 of the 19 observations (predictive accu-
racy: 100%, p < 0
01). The one exception, also captured

6 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
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Figure 3 Probability That the Proposer Makes an Offer of �i During the First and Last Periods for the Model (Left) vs. Observations (Right)
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Source. Roth et al. (1991).
Note. Small offers are likely to be rejected, so bargainers eventually make offers that tend to converge around 40% of the pie.

by the model, is a truncation game, in which the
offer is considerably higher. Ochs and Roth (1989)
also note that the first mover’s discount factor affects
the outcome (fixing other discount factors), even in
a two-round game. As we show in the appendix, for
all relevant comparisons, our model predicts that the
average opening offers move in the same direction as
the data indicate.
Neelin et al. (1988) observe different behavior in

their two-round game than Binmore et al. (1985)
observe in theirs, even though the two games use the
same discount factors and share the same selfish equi-
librium. Our model correctly predicts higher open-
ing offers in the Binmore et al. (1985) games (0.441
observed versus 0.416 predicted) than in the Neelin
et al. (1988) games (0.353 observed versus 0.265 pre-
dicted) as a result of the differences in the bargaining
pie sizes.

5.3. Rejection Rates
In Figure 6, we provide the out-of-sample plots for
rejections of opening offers. Again, a perfect fit occurs
along the 45 line, though we observe two deviations.
First, heteroscedasticity exists, such that variability

Figure 4 Average Rejection Rate Diminishes with Number of
Games Played
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Source. Roth et al. (1991).

increases as the predicted rejection increases. Sec-
ond, for the four games with the smallest bargaining
pies, the predicted rejection rates hover around the
arbitrary level, or 50%, which is substantially higher
than observed. The regression that estimates observa-
tions on the basis of predictions, using weighted least
squares, is insignificant and accounts for only 15% of
the data. However, it remains apparent from Figure 6
that this insignificance is due to the poor small pie
predictions.
The weighted least squares regression estimate in

Figure 6 also adds a dummy variable for the four
smallest pie games. It fits the data fairly well, with an

Figure 5 Predicted First Offers Across Multiple-Round Games,
Observations vs. Model
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Figure 6 Predicted Rejection Rates Across Multiple-Round Games,
Observations vs. Model
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R2 of 0.474 (two-sided p-values in parentheses):

Obs
 = 0
597 Pred
 − 0
206 Small + 0
052
�0
005� �0
007� �0
384� � (9)

where Small is a dummy equal to 1 for small
pie games and 0 otherwise. The coefficient for
PREDICTED is 0.597. We cannot reject the model
that restricts this value to 1 (F -test, p = 0
183), and
the intercept term is small and not significant. When
we drop the small pie games from the sample and
rerun the regression, we obtain similar estimates
(R2 = 0
495). We might suspect that the smaller the
pie, the more likely the model overpredicts, but
further regression analysis does not bear out this
explanation. Neither pie size nor reciprocal pie size
variables reveal any significant correlation with the
observed rejection rates, nor does either variable add
to the predictive value of the regression. The results
are robust to other estimations approaches (see the
online appendix).
Güth and Tietz (1988) observe a dramatic rise in

the rejection rates when the cost of disagreement
decreases; our model generally supports this as a reg-
ularity. Ochs and Roth (1989) compare 10 scenarios
(fixed number of rounds) in which the cost of disagree-
ment increases (i.e., discount factor decreases and the
other factor is fixed, or both decrease). In all cases,
the out-of-sample estimates suggest that rejection rates
should rise; the observed rejection rates increase in 8 of
10 cases (p= 0
055, one-tailed sign test).

Figure 7 Predicted Disadvantageous Counteroffers Across
Multiple-Round Games, Observations vs. Model
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5.4. Disadvantageous Counteroffers
We estimate the incidence of disadvantageous coun-
teroffers, when responders reject an initial offer, then
eventually make a counteroffer that leads to a lower
monetary payoff. Although fewer games continue to
the second round (between 2 and 26 per treatment,
with an average of 12.4), which means we compute
the advantageous/disadvantageous counteroffer pro-
portions on just a few observations, the predictions
fit quite well (see Figure 7), with an R2 of 0.694 (two-
sided p-values in parentheses):

Obs
 = 0
949 Pred
 − 0
059
�0
000� �0
618� 
 (10)

The intercept term is not significantly different
from 0, the coefficient for PREDICTED is not statisti-
cally different from 1, and the model that forces the
slope to 1 cannot be rejected (F -test, p = 0
679). This
good fit, achieved despite considerable variance in the
data, is particularly notable because the model was
calibrated on a one-round version of the bargaining
game, where counteroffers are impossible.

5.5. Experience Effects
In three studies (Neelin et al. 1988, Ochs and Roth
1989, Bolton 1991) game players repeated experience
with bargaining in the same role. As an illustration,
Figure 8 shows experience trends in the Bolton (1991)
observations. In the �2/3�1/3� treatment of the trunca-
tion game, the observed mean opening offers deviate
from the selfish equilibrium in the direction of the
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Figure 8 Mean Opening Offers by Round in Two-Round (Top) and Truncation (Bottom) Versions of Sequential Bargaining, with Different Discount
Factors and a Pie of $12
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equal money division. This difference widens with
experience. In contrast, the difference narrows for
�1/3�2/3�. The direction of both of these trends is well
captured by the model; the graphs for the Neelin et al.
(1988) and Ochs and Roth (1989) data are comparable
(and available in the online appendix).
The rate of change due to experience sometimes dif-

fers between the model and the data (i.e., the rate fore-
cast by the model tends to be slower). Nevertheless,
the model tends to capture the direction of the effect.
In Table 2, we classify the slope parameters obtained
from linear regressions on the data and model into
three categories: positive trend (mean opening offers
tend to increase with experience), not significant (at
p < 0
05), and negative trend. Treatment data disperse
essentially uniformly across these categories. For 8 of
13 experiments (61.5%), the experience effect predic-
tions and observations fall into identical categories,
which is significantly better than the proportion of
success available through random selection (propor-
tion test, one-tailed p= 0
035�.

Another issue is whether, with experience, first
offers move toward the (nonquantal) ERC equilib-
rium. In a simple test, we check whether the mean
squared error of the observation versus the predic-
tion tends to be smaller in the final than in the first
round of play. Across 13 treatments, the average error
decreases (one-tailed p= 0
027), which indicates that,
with experience, offer behavior moves toward the
ERC equilibrium.

5.6. Empirical Regularities
In Table 3, we summarize the major empirical regu-
larities reported in bargaining game literature. Most
are well predicted by the ERC model (Roth et al. 1991
data included).

6. Robustness Checks
In this section, we first report the results of three alter-
nate specifications of the preference function: the sim-
ple quantal response equilibrium (QRE) model with
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Table 2 Slope Parameters Obtained from Linear Regressions on Data
and Model

Trend

Experiment Initials Rounds Obs. Model

Neelin et al. (1988) NSS4 5 n.s. +
Ochs and Roth (1989) OR1 2 − −

OR2 2 n.s. n.s.
OR3 2 + +
OR4 2 − +
OR5 3 − −
OR6 3 − −
OR7 3 n.s. n.s.
OR8 3 + −

Bolton (1991) B1 2 − +
B2 2 n.s. +
B3 Trunc. + +
B4 Trunc. + +

Convergent 8 of 13 0.615
Divergent 3 of 13 0.231

Notes. About 62% of slope predictions converge with the observations. See
Table 1 for treatment label interpretations.

Table 3 Empirical Regularities in Bargaining Game Data

Empirical regularities Data Model Accuracy (%)

Opening offers tend to be higher than
the subgame perfect equilibrium

15 of 20 15 of 20 90

Opening offers tend to be less than
half of the pie

19 of 20 19 of 20 100

Only exception to above: truncation
game (0.33, 0.67)

� �

Rejection rates increase with discount
factors (Güth and Tietz 1988, Ochs
and Roth 1989)

9 of 11 11 of 11 82

A substantial proportion of rejected
first-period offers are followed by
disadvantageous counteroffers

17 of 19 19 of 19 89

Experience trends observed in mean
opening offers

9 of 13 11 of 13 62

Notes. Most regularities are well predicted by the model. Accuracy is the
proportion of model predictions that concur with observations (presence or
absence of regularities).

no fairness considerations; the Fehr–Schmidt variant;
and the ERC model, in which the social reference
point for fairness is freely estimated. We also deal
with another issue, namely, how dependent our esti-
mates are on the particular data we use to fit the
model. We fit the model in two alternative ways,
using the two- and three-round data from one of
the multiple-round studies. Finally, we extend our
out-of-sample estimates to an experiment involving
a three-person ultimatum game that the ERC model
successfully explains in an ordinal sense (Bolton and
Ockenfels 1998). This provides a strong test of stabil-
ity with regard to the model’s reference point; it also
permits a comparison to a data set in which the pro-
poser is far less generous than in any of the games
examined thus far.

6.1. Alternative Fairness Specifications
In this section, we test simple QRE and Fehr–Schmidt
specifications—and report both in-sample fit and out-
of-sample predictions. To provide fair comparisons,
we keep the learning components of the model un-
changed and reestimate the parameters � ′

�, �
′
�, and �1

for each variant.

6.1.1. Simple QRE Model. The simple QRE mod-
el differs from our ERC model in that it assumes
no fairness considerations; hence, the b parameter in
the original ERC model is set to 0. This model as-
sumes that bargainers are driven solely by pecuniary
motives, though they make choices that are proba-
bilistic in nature. Thus the model provides a test of
the extent to which fairness considerations really are
critical for explaining bargaining behavior. We fit this
simpler model with the Roth et al. (1991) data and
obtain the following parameter estimates (standard
deviations in parentheses):

b= n/a � ′
� = 0
540 � ′

� = 0
389 �1 = 0
028
�n/a� �0
018� �0
016� �0
006�




All parameters have the expected sign and are signif-
icant at p < 0
01. The model predicts that the average
offer will be 29.5% of the pie (cf. 40.1% in the data),
with an average rejection rate of 25.3% (cf. 26.4%).
These summary statistics suggest that the QRE model
provides a reasonable fit, but removing fairness con-
siderations actually greatly deteriorates the fit, as
shown in Figure 9.
If the proposer offers nothing to the responder

(� = 0), the QRE model predicts that the latter will be
indifferent between accepting and rejecting the offer
because both imply no payoff; the data clearly sug-
gest that responders consider such offers profoundly
unfair and reject them with near certainty. In the
absence of fairness considerations, this pattern can-
not be captured by the QRE model. Furthermore, the
log-likelihood of the QRE model is −3�311 (standard
deviation 22.9, bootstrap estimation), whereas its ERC
counterpart is −2�694 (44.8). Thus, we can easily reject
the former statistically. (Also see Yi 2005, who comes
to similar conclusions from a different approach.)

6.1.2. Fehr–Schmidt Model. The Fehr–Schmidt
model (Fehr and Schmidt 1999) is one of the impor-
tant alternatives to ERC (a second, Charness and
Rabin 2002, is omitted because it is not a good can-
didate to fit these data7). The Fehr–Schmidt model

7 Charness and Rabin’s model (2002, pp. 818–820) posits that
Pareto-damaging games, such as ultimatum bargaining, involve a
form of reciprocity called “concern withdrawal,” such that players
“withdraw their willingness to sacrifice to allocate the fair share
toward somebody who himself is unwilling to sacrifice for the
sake of fairness.” The model they present captures this kind of
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Figure 9 Probability That the Proposer Makes an Offer of �i (Left) and Probability That the Responder Rejects Such an Offer (Right),
Observations vs. QRE Model
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Source. Roth et al. (1991).

employs a more egalitarian measure of fairness in the
preference function than does ERC. According to this
specification, in a game with three or more players,
two settlements that provide the same absolute pay-
off for one player might not lead to the same util-
ity, depending on the fairness with which the rest of
the pie gets split among the remaining players. In a
two-player game, however, the utility function sim-
plifies to a linear variant of the ERC model (with the
assumption that �>�> 0):

U���=


c
(
� −�

(
1
2 −�

))
if � < 1/2�

c
(
� −�

(
� − 1

2

))
if � > 1/2�

(11)

where c is the size of the pie, � is the share of
the pie offered, and � and � are negative and pos-
itive reciprocity parameters, respectively. We fit the
Fehr–Schmidt model to the Roth et al. (1991) data
and obtain the following results (standard deviation
in parentheses):

�= 1
053 �= 0
003 � ′
� = 0
877 � ′

� = 0
346 �1 = 0
040
�0
076� �0
007� �0
108� �0
025� �0
013�




The �> 0 assumption of the model is violated, and
the Fehr–Schmidt model reduces to a linear version
of the original ERC, negative reciprocity specification.
This result is consistent with our finding that posi-
tive reciprocity in the ERC model is mostly irrelevant.
We cannot rule out positive reciprocity per se, but the
ultimatum game to which we fit the model does not
provide data that can quantify it.
The overall fit of the model is excellent (see Fig-

ure 10). The log-likelihood is −2�586 (45.8), compared

reciprocity only “crudely,” as they acknowledge (Charness and
Rabin 2002, p. 825). Although they construct a more detailed ver-
sion of the model in an appendix, they conclude that “It is too
restrictive to be directly applied to experimental evidence…” (Char-
ness and Rabin 2002, p. 857). The elaboration necessary to fit this
model to the data is beyond the scope of this paper.

with −2�694 (44.8) for the nonlinear ERC specifi-
cation, which is a significant improvement (t-test =
9
08� p < 0
01). The correlations between observations
and predictions are high, with R� = 0
974 and R� =
0
974.
The positive reciprocity assumption of the Fehr–

Schmidt model (�> 0) is violated by our estimations,
and, because all games in our sample are two-person
games, the only difference that remains with the ERC
model is that the Fehr–Schmidt model specifies neg-
ative reciprocity as a linear function. As Fehr and
Schmidt (1999, p. 823) argue, such linearity in inequal-
ity aversion “may not be fully realistic,” but it is suf-
ficient to provide a good fit in the one-round game.
However, as Fehr and Schmidt (1999, p. 823) also
report, “some observations on [other] experiments
suggest that there are a nonnegligible fraction of peo-
ple who exhibit nonlinear inequality aversion.” For
this reason, we might suspect that the nonlinear spec-
ification should provide better out-of-sample fit for
more complex, multiple-round games.
In Table 4, we report the log-likelihood of our out-

of-sample estimations for all multiple-round data sets,
as derived from the ERC model (nonlinear inequality
aversion), the Fehr–Schmidt model (linear inequality
aversion), and the simple QRE model (no inequal-
ity aversion). The ERC model provides the best out-
of-sample forecasts for 11 of the 18 games tested; the
Fehr–Schmidt model forecasts best 4 of the 18 games
and ties with ERC for 3 more. As expected, the QRE
model fares the worst by far.

6.1.3. Alternative Fairness Reference Point. In
the two-person game, the ERC model assumes a refer-
ence point of half of the pie; receiving less than that is
deemed unfair and associated with a negative utility
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Table 4 Maximum Likelihood for Out-of-Sample Forecasts with
the (a) ERC Model (Nonlinear Inequality Aversion),
(b) Fehr–Schmidt Model (Linear Inequality Aversion),
and (c) Simple QRE Model (No Inequality Aversion); All
Calibrated with the Roth et al. (1991) Ultimatum Game
Data Set

Experiment Initials Rounds ERC Fehr-Schmidt QRE

Roth et al. (1991) RPOZ 1 −2,694.0 −2,586.3 −3,311.6

Binmore et al BSS 2 Raw data not available

Güth and Tietz GT1 2 −207.0 −233.3 −122.9
(1988) GT2 2 −183.9 −186.0 −209.3

Neelin et al. NSS1 2 −128.3 −130.7 −135.2
(1988) NSS2 3 −108.7 −102.2 −120.7

NSS3 5 −116.5 −118.1 −126.1
NSS4 5 −170.7 −191.2 −178.9

Ochs and Roth OR1 2 −172.8 −239.4 −156.0
(1989) OR2 2 −216.5 −153.0 −267.7

OR3 2 −137.4 −162.1 −160.0
OR4 2 −214.1 −222.4 −198.7
OR5 3 −139.4 −127.3 −238.7
OR6 3 −211.4 −247.6 −232.3
OR7 3 −203.4 −241.7 −211.5
OR8 3 −247.3 −247.8 −266.0

Bolton (1991) B1 2 −145.2 −150.6 −182.3
B2 2 −114.4 −96.6 −139.2
B3 Trunc. −156.6 −173.6 −189.5
B4 Trunc. −144.9 −157.7 −183.4

Best fit 11 of 18 4 of 18 3 of 18
n.s. �= 0 of 7 3 of 12 0 of 15
Total 11 of 18 7 of 18 3 of 18

(1985)
.

Notes. Bold, underlined values indicate the best fit. Bold, nonunder-
lined values indicate fits not statistically different from the best fit at
p < 0�05. Shaded cells represent in-sample fit and are excluded from the
comparisons.

component. This 50–50 reference point makes sense
from a purely monetary perspective because beyond
this point the share of the other player becomes more
desirable than one’s own.

Figure 10 Probability That the Proposer Makes an Offer of �i (Left) and Probability That Such an Offer Is Rejected (Right), Observations vs.
Fehr–Schmidt Model
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Source. Roth et al. (1991).

To explore whether this assumption is justified,
we modify the utility function in Equation (2) by
replacing the constant 1/2 in the term (�−1/2) with a
parameter �. When we freely estimate this additional
parameter with the Roth et al. (1991) data, we deter-
mine �= 0
521 (standard deviation= 0
087), which is
not significantly different from 1/2. Neither the over-
all fit of the model nor its out-of-sample predictive
accuracy improves with any significance.
However, though this 50–50 social reference point

works best in stylized games, it might not hold in
real-life bargaining situations, in which bargaining
powers vary and positional advantages exist. In these
cases, the reference point should not be assumed but
rather freely estimated.

6.2. Alternative Model Fits
A suitable data set for estimating the model needs
two critical characteristics: First, to estimate experi-
ence effects, the data need to include observations of
multiple plays. Second, because the desirable proper-
ties of maximum likelihood estimates can be achieved
only asymptotically, the data set should be large. Of
the data sets we examine, Ochs and Roth’s (1989)
meets both criteria best, with enough data to fit
both two-round and three-round games separately—
an interesting exercise considering the issue of back-
ward induction’s ability to approximate behavior. We
reestimate the model parameters using the two- and
three-round game data separately and estimate one
set of parameters to fit all four treatments of each
game (i.e., four combinations of discount factors)
simultaneously, which creates two data sets of 380
observations each.
As we report in Table 5, the results of the param-

eter estimates suggest that most differences are sta-
tistically significant, though the b estimate does not
differ statistically between the second and third data
sets, nor does �1 (experience) between the first and
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Table 5 Parameter Estimates of the Model, Using Maximum
Likelihood Estimation and Three Different Data Sets

b �	 �
 �1

Ultimatum game 6�692 0.690 0.280 0.065
(Roth et al. 1991) �0�740� (0.073) (0.027) (0.016)

Two-round bargaining game 10�066 0.586 0.222 0.007
(Ochs and Roth 1989) �2�875� (0.054) (0.033) (0.017)

Three-round bargaining game 12�081 0.502 0.191 0.068
(Ochs and Roth 1989) �1�991� (0.071) (0.017) (0.028)

third (i.e., learning does not accelerate as the number
of rounds increases). In terms of behavioral tenden-
cies, parameter estimates appear reasonably similar
across games. Perhaps the biggest difference occurs
with respect to the estimate of b, which increases
with the number of rounds; the two-round and, to a
greater extent, the three-round estimates imply that
relative payoff takes on a somewhat heavier weight.
The heavier weight might result from the greater diffi-
culties associated with backward induction, resulting
in decisions that add somewhat more weight on what
is fair and less on strategic calculation.
We report the out-of-sample predictive accuracy of

the ERC model in Table 6, based on the data sets
on which we calibrate the model. Specifically, for the
ERC model calibration, we use the simplest version of
the ultimatum game, which best predicts the Neelin
et al. (1988) and Bolton (1991) data sets. In contrast,
the model calibrated on the Ochs and Roth (1989) data
predicts other games best. Although the one-round
game seems to provide the best basis for calibration,
differences in log-likelihoods are small; therefore, the
specific data set on which a model is calibrated has
only a marginal impact on out-of-sample predictive
accuracy.

6.2.1. Alternative Model Fits with the Fehr–
Schmidt Model. The Fehr–Schmidt model provides
an excellent fit to the one-round ultimatum data set
but is outperformed by the ERC model when it comes
to out-of-sample forecasts. We also test whether its
poor out-of-sample performance may be due to the
data set on which it was fit by estimating it on Ochs
and Roth’s (1989) two- and three-round data sets and
predicting the other games out-of-sample (as for the
ERC model in the previous section; see Table 7 for
details).
When we fit both the ERC and the Fehr–Schmidt

models on Ochs and Roth’s (1989) two-round data
sets, the latter offer better in-sample fit but poorer
out-of-sample performance, with particularly bad
performance in terms of predicting the one-round ulti-
matum game. If both models use the three-round bar-
gaining data sets, their in-sample and out-of-sample
results are comparable, except that the Fehr–Schmidt
model again forecasts the one-round ultimatum game

Table 6 Maximum Likelihood of Out-of-Sample Forecasts of the
ERC Model, Calibrated on the (a) Roth et al. (1991)
Ultimatum Game Data Set, (b) Ochs and Roth’s (1989)
Two-Round Game Data Sets, and (c) Ochs and Roth’s
(1989) Three-Round Game Data Sets

ERC model fit on� � �

Experiment Initials Rounds RPOZ OR1–OR4 OR5–OR8

Roth et al. (1991) RPOZ 1 −2,693.96 2,833.3 −2,777.9

Binmore et al. BSS 2 Raw data not available

Güth and Tietz GT1 2 −207.0 −195.7 −199.6
(1988) GT2 2 −183.9 −175.2 −174.1

Neelin et al. NSS1 2 −128.3 −131.3 −132.0
(1988) NSS2 3 −108.7 −110.9 −110.1

NSS3 5 −116.5 −119.8 −120.1
NSS4 5 −170.7 −178.0 −180.4

Ochs and Roth OR1 2 −172.8 −159.6 −174.4

(1989) OR2 2 −216.5 −177.0 −170.1

OR3 2 −137.4 −141.3 −136.5

OR4 2 −214.1 −192.7 −200.8

OR5 3 −139.4 −140.4 −134.2

OR6 3 −211.4 −206.1 −204.9

OR7 3 −203.4 −201.4 −199.5

OR8 3 −247.3 −220.6 −221.6

Bolton (1991) B1 2 −145.2 −158.0 −156.4
B2 2 −114.4 −123.9 −120.3
B3 Trunc. −156.6 −167.6 −164.9
B4 Trunc. −144.9 −178.8 −171.9

Best fit 10 of 18 4 of 13 5 of 13
n.s. �= 2 of 8 3 of 9 3 of 8
Total 12 of 18 7 of 15 8 of 15

(1985)

Notes. Bold, underlined values indicate the best out-of-sample fit. Bold,
nonunderlined values indicate fit not statistically different from the best
fit at p < 0�05. Shaded cells represent in-sample fit and are excluded
from comparisons.

poorly out of sample. To provide a holistic view, we
sum the log-likelihoods for all out-of-sample forecasts;
regardless of the data set used, the ERC model pro-
vides a better out-of-sample fit at p < 0
05.
The linear specification of the Fehr–Schmidt mod-

els provides an excellent fit (sometimes better than
the ERC model). However, when the strategic param-
eters of the game push the negotiation solutions out-
side of the boundaries of the data set used to fit the
model, the linear specification cannot anticipate the
wide variations observed in many games. The ERC
specification therefore offers better out-of-sample pre-
dictive power, regardless of the data set used.

6.3. Stress Test: Three-Person Ultimatum
Bargaining

The three-person ultimatum bargaining game is simi-
lar to the simple, one-round version of the ultimatum
game, except that a third player (“dummy”) also
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Table 7 Maximum Likelihood of Out-of-Sample Forecasts of the ERC and Fehr–Schmidt Models, Calibrated on the (a) Roth et al. (1991)
Ultimatum Game Data Set, (b) Ochs and Roth’s (1989) Two-Round Game Data Sets, and (c) Ochs and Roth’s (1989) Three-Round
Game Data Sets

RPOZ data OR1–OR4 data OR5–OR8 data

Experiment Initials Rounds ERC Fehr–Schmidt ERC Fehr–Schmidt ERC Fehr–Schmidt

Roth et al. (1991) RPOZ 1 −2,694.0 −2,586.3 −2,833.3 −3,087.8 −2,777.9 −3,025.4

Binmore et al. (1985)  BSS Raw data not available

Güth and Tietz (1988) GT1 2 −207.0 −233.3 −195.7 −185.9 −199.6 −176.4
GT2 2 −183.9 −186.0 −175.2 −179.7 −174.1 −176.8

Neelin et al. (1988) NSS1 2 −128.3 −130.7 −131.3 −131.7 −132.0 −133.7
NSS2 3 −108.7 −102.2 −110.9 −115.8 −110.1 −113.9
NSS3 5 −116.5 −118.1 −119.8 −122.9 −120.1 −123.9
NSS4 5 −170.7 −191.2 −178.0 −178.3 −180.4 −178.2

Ochs and Roth (1989) OR1 2 −172.8 −239.4 −159.6 −165.9 −174.4 −161.7

OR2 2 −216.5 −153.0 −177.0 −158.4 −170.1 −162.3

OR3 2 −137.4 −162.1 −141.3 −124.2 −136.5 −125.7

OR4 2 −214.1 −222.4 −192.7 −174.3 −200.8 −178.3

OR5 3 −139.4 −127.3 −140.4 −141.9 −134.2 −135.5

OR6 3 −211.4 −247.6 −206.1 −210.6 −204.9 −208.5

OR7 3 −203.4 −241.7 −201.4 −205.1 −199.5 −200.9

OR8 3 −247.3 −247.8 −220.6 −214.3 −221.6 −219.2

Bolton (1991) B1 2 −145.2 −150.6 −158.0 −162.0 −156.4 −160.1
B2 2 −114.4 −96.6 −123.9 −119.8 −120.3 −117.6
B3 Trunc. −156.6 −173.6 −167.6 −167.0 −164.9 −169.4
B4 Trunc. −144.9 −157.7 −178.8 −195.2 −171.9 −186.2

Best fit 10 of 18 4 of 18 6 of 15 3 of 15 6 of 18 5 of 18
n.s. �= 4 of 8 0 of 14 5 of 9 1 of 12 2 of 12 2 of 13
Total 14 of 18 4 of 18 11 of 15 4 of 15 8 of 18 7 of 18

Global log-likelihood
(out of sample) −3,018.5 −3,181.2 −5,140.9 −5,418.0 −4,989.6 −5,189.6

2

Notes. Bold, underlined values indicate the best out-of-sample fit. Bold, nonunderlined values indicate fit not statistically different from the best fit at
p < 0�05. Shaded cells represent in-sample fit and are excluded from comparisons.

takes a share of the pie, though this player makes no
decisions. The first player proposes a division of the
pie among all three players, and the second player
either accepts or rejects that offer. If the proposition
is rejected, all players receive no monetary payoff.
We compare our predictions with the simplest version
(i.e., essential information treatment, constant mode)
of the original experiment conducted by Güth and
van Damme (1998), in which players had to share a
pie of 24 Dutch guilders (divided into 120 tokens),
which represented approximately $13.6 at that time
(c= 13
6).8

ERC stipulates a modification in the utility function
to fit a three-person game: Because three players are
involved, the social reference share of the payoff is
one-third instead of one-half of the pie; in terms of
the utility function in Equation (2), the term �� −1/2�

8 Güth and van Damme (1998) also report data pertaining to when
the responder knows the entire proposed allocation. These data are
very similar to the data we report.

gets replaced by ��−1/3� (Bolton and Ockenfels 1998
study this game using the same modification). This
is the only change: We get out-of-sample estimates
for this game using the same procedure as before; in
particular, the b and � parameters of the equation are
as estimated from the Roth et al. (1991) ultimatum
game with a social reference share of one-half.
One of Güth and van Dammes’s (1998) critical

findings was that the dummy player receives little
more than the minimum, five tokens, that the exper-
imenters required. On average, during the first six
games, the dummy’s share was 7.8 of 120 tokens in
the observations (6.5%). In contrast, our model pre-
dicts 17.2 (14.3%), as shown in Table 8.
A second finding was that the rejection rates in this

game were smaller than they tend to be in regular
ultimatum games. The average rejection rate in the
Roth et al. (1991) two-person ultimatum experiment is
0.264 (the typical 15%–20% rejection rate observed in
two-person ultimatum games (Roth 1995)). However,
the rate is 0.097 in Güth and van Damme’s (1998) data
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Table 8 Average Amounts (Pie Size of 120 Tokens, Minimum Share of
5 Tokens Per Player Allowed) Allocated to the Three Players
by the Proposer in the Essential Information Treatment of Güth
and van Damme’s (1998) Game, Observations vs. Model

Model
Observations,
Games 1–6 Games 1–6 15th game 30th game

Proposer (x) 79�1 65�7 72�1 78�0
Responder (y) 33�1 37�1 36�7 33�8
Dummy (z) 7�8 17�2 11�1 8�2
Rejection rate 0�097 0�256 0�152 0�088

Source. Güth and van Damme (1998).
Note. The model replicates observations when players gain experience:
The dummy’s payoff decreases and the proposer’s payoff increases with
experience.

set (i.e., essential information condition). Our model
does not capture this finding, predicting a rejection
rate of 0.256. The problem appears to be that real play-
ers learn more quickly than our simulated players; the
predicted rejection rate after 30 games is 0.088.
There was also an experience effect in the data,

and our model does capture some of its character-
istics. Specifically, we apply the model by predict-
ing the game’s outcomes for the sixth, 15th, and 30th
games. As shown in Table 8, this does not affect the
responder’s payoff much, but it increases the pro-
poser’s payoff to the detriment of the dummy’s. In
other words, the proposer learns that he can keep
the dummy’s share of the pie without affecting the
responder’s likelihood of accepting his proposals.
Güth and van Damme (1998) identify the same pat-
tern in their experiment.
Thus, the model correctly estimates both the nature

and the direction of change due to player experience,
but it underestimates the pace at which that change
occurs. The model’s predictions for the 30th game
come strikingly close to the observations made dur-
ing the sixth game in Güth and van Damme’s (1998)
experiment, namely, x = 80
8, y = 33
3, and z = 5
8,
with a similar rejection rate. Thus, the large overes-
timation of the rejection rate mainly results from the
model’s inability to predict the pace of learning rather
than any failures in predicting the direction, nature,
or effects of such learning.

7. Summary
We estimate fairness preferences from the simplest,
one-round version of sequential bargaining games
and use these estimates to forecast, out of sample,
multiple-round games with various lengths, discount
factors, pie sizes, and levels of bargainer experience.
The out-of-sample forecasts capture many of the
reported empirical regularities, as well as a substantial
amount of the variability in first offers, rejections, and
counteroffers (even though there are no counteroffers

in the one-round version used to fit the model). Over-
all, they offer better predictions than traditional pref-
erence models that ignore fairness considerations. In
statistical tests in which we compare the forecasts
to actual data, we cannot reject the model, with the
exception of the rejection rates for the smallest pie size
games. In this sense, willingness to pay for fair treat-
ment is robust across the seven studies we examine,
and much of the variance in observed behavior can be
accounted for by changes in the potential trade-offs,
which themselves result from changes in the strate-
gic parameters across games. Also, experience effects
tend to push offers in the direction of the station-
ary ERC equilibrium—a point potentially important
for future theory pertaining to learning and bargain-
ing. Finally, our model compares well with alternative
preference specifications, and the estimates are reason-
ably robust to alternative data fittings. These findings
lay the groundwork for estimating the influence of
fairness on field negotiations and across different sub-
populations. However, extending our work to these
tasks entails certain challenges:
For example, obtaining estimates for field negotia-

tions from the present model would require priming
the model with the fairness standard that exists in the
field. The key fairness standard among the bargain-
ers in these studies was how their share compares
with that of the other bargainer(s). But the compari-
son also might be calibrated to those aspects relevant
in other negotiations, such as the outside (pattern)
agreements that often influence collective bargaining
settlements. An existing body of work identifies some
fairness criteria; for example, Young (1991) explores
the issues involved in choosing between competing
fairness criteria.
It also would be interesting to investigate whether

different social strata exhibit similar or different atti-
tudes toward fairness. The subjects in these studies
are all university students, so the method of esti-
mation we present should be extended to differ-
ent groups of respondents. Although we find little
evidence to suggest any significant cultural effects,
an investigation focused specifically on this issue
might identify effects not evident here. Moreover,
some social status or life cycle effects seem likely,
which could have great importance for negotiation
practitioners.
Heterogeneity also could mark attitudes among

people in the same social strata. We are limited
to estimating average fairness preferences, whereas
addressing individual differences would require refin-
ing the way in which the model accounts for individ-
ual variability. Players’ heterogeneity and individuals’
choice randomness (two main explanations of why
games outcomes are probabilistic) become somewhat
confounded in our formulation, particularly in the
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parameter of the decision rules, and cannot be ana-
lyzed or estimated separately. The major obstacle to
overcoming this difficulty is getting data sets that are
large enough, in that they provide a sufficient num-
ber of choices per individual. Alternatively, Bayesian
statistical methods might be brought into play.
Also, the experience component of the ERC util-

ity decision framework is independent of bargain-
ers’ past actions, which seems rather unrealistic. The
experience trend embedded in the model supposedly
arises from a decrease in bargainers’ heterogeneity
and choice randomness, but the way these phenom-
ena relate to experience and trial and error requires
additional investigation.
Finally, it would be useful to extend our analysis to

bargaining protocols beyond the offer—counteroffer
format. In this regard, the ERC model implies some
interesting directions. For example, introducing com-
petition into the negotiation may lead to competitive
outcomes, even if they are highly inequitable, despite
any preferences for fairness. Failure to compete leaves
one player with nothing and others with much—a
bad outcome in both absolute and relative terms. In
contrast, competing at least fulfills a player’s absolute
objectives. Roth et al. (1991) include a market game

Appendix. Opening Offer and Rejection Behavior by Treatment: Observations and Model Predictions
(ERC, Fehr–Schmidt, and QRE Models)

Opening offers Rejection rates Disadvantageous counteroffers

Experiment Initials Obs. ERC Fehr–Schmidt QRE Obs. ERC Fehr–Schmidt QRE Obs. ERC Fehr–Schmidt QRE

Roth et al. (1991) RPOZ 0.395 0.393 0.401 0.289 0.272 0.265 0.258 0.259 n/a

Binmore et al. (1985) BSS 0.416 0.441 0.441 0.441 0.148 0.488 0.488 0.488 0.750 0.788 0.788 0.788

Güth and Tietz (1988) GT1 0.276 0.373 0.391 0.292 0.190 0.288 0.268 0.246 0.750 1.000 1.000 0.950
GT2 0.440 0.409 0.398 0.446 0.619 0.572 0.588 0.565 0.000 0.108 0.089 0.058

Neelin et al. (1988) NSS1 0.265 0.355 0.350 0.377 0.225 0.463 0.460 0.370 0.556 0.663 0.645 0.634
NSS2 0.472 0.354 0.349 0.380 0.050 0.499 0.505 0.416 0.500 0.395 0.367 0.434
NSS3 0.320 0.355 0.349 0.378 0.125 0.476 0.476 0.386 0.400 0.566 0.546 0.561
NSS4 0.348 0.436 0.450 0.365 0.167 0.326 0.308 0.329 0.857 0.849 0.869 0.448

Ochs and Roth (1989) OR1 0.399 0.418 0.442 0.372 0.100 0.103 0.115 0.153 0.600 0.999 0.998 0.579
OR2 0.482 0.425 0.464 0.382 0.150 0.139 0.120 0.175 1.000 0.999 0.998 0.620
OR3 0.471 0.466 0.495 0.487 0.187 0.207 0.094 0.223 0.733 0.773 0.969 0.450
OR4 0.458 0.441 0.482 0.469 0.200 0.159 0.090 0.186 0.550 0.977 0.988 0.355
OR5 0.429 0.414 0.429 0.338 0.120 0.096 0.108 0.153 1.000 0.956 0.940 0.546
OR6 0.443 0.433 0.462 0.389 0.140 0.303 0.237 0.307 0.857 0.764 0.691 0.559
OR7 0.449 0.434 0.462 0.395 0.144 0.314 0.242 0.321 0.462 0.341 0.348 0.225
OR8 0.453 0.425 0.450 0.401 0.289 0.135 0.129 0.176 0.885 0.928 0.888 0.296

Bolton (1991) B1 0.378 0.398 0.413 0.290 0.188 0.320 0.302 0.352 0.833 0.848 0.817 0.462
B2 0.476 0.421 0.435 0.391 0.204 0.322 0.291 0.386 0.200 0.471 0.474 0.199
B3 0.384 0.452 0.464 0.340 0.391 0.365 0.341 0.403 0.960 0.885 0.871 0.493
B4 0.678 0.568 0.547 0.491 0.266 0.539 0.569 0.570 0.000 0.344 0.259 0.230

Güth and van Damme (1998)a GvD 0.276 0.309 0.319 0.284 0.097 0.256 0.240 0.259 n/a
0.065 0.143 0.148 0.131 n/a

Pearson’s R2 (All observations) 0.789 0.739 0.654 0.118 0.120 0.198 0.694 0.676 0.347
(Excluding RPOZ and GvD) 0.596 0.495 0.416 0.120 0.122 0.207 0.694 0.676 0.347
(Excluding RPOZ, GvD, and 0.707 0.612 0.562 0.447 0.468 0.444 0.705 0.686 0.454
small pie games)

aThe top number refers to mean offer to the responder, and the bottom number refers to mean offer to the dummy.

modification of the ultimatum game, in which multi-
ple proposers make offers to a single responder, who
could choose to accept just one proposal. Whether
players deem the procedures followed in the bargain-
ing protocol fair also might have an impact. Pratt
and Zeckhauser (1990) describe the use of a fair pro-
cedure for allocating nonmonetary items; Brams and
Taylor (1993) describe a generalized version of the
“one divides, the other chooses” protocol for fair divi-
sion; and Bolton et al. (2005) sketch how the ERC
model might be extended to account for fair proce-
dures. We hope to have something to say about these
kinds of protocols in the near future.

8. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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