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Abstract. Managers frequently explore new strategies, and exploit familiar ones, when
making decisions on new product development, pricing, or advertising. Exploring for too
long, or exploiting too soon, will generate inferior financial returns. Our research describes
decision makers’ exploration/exploitation trade-offs and their link to psychometric traits.
We conduct an incentive-aligned study in which subjects play a multiarmed bandit experi-
ment and evaluate how subjects balance exploration and exploitation, linked to psycho-
metric traits. To formally describe exploration/exploitation trade-offs, we develop a behav-
ioral model that captures latent dynamics in learning behavior. Subjects transition between
three unobserved states—exploration, exploitation, and inertia—updating their beliefs
about expected payoffs. Our analysis suggests that decision makers overexplore low-
performing options, forgoing over 30% of potential revenue. They heavily rely on recent
experiences. Risk-averse decision makers spend more time exploring. Maximizers are
more sensitive to payoffs than satisficers. Our research builds the groundwork needed to
devise remedial actions aimed at helpingmanagers find an optimal balance between explo-
ration and exploitation. One way to achieve this goal is by carefully designing the learning
environment. In two additional studies, we analyze the evolution of exploration/exploita-
tion trade-offs across different learning environments. Offering decision makers repeated
opportunities to learn and increasing the planning horizon appears beneficial.
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1. Introduction
In a wide range of business scenarios, managers need
to strike a healthy balance between exploration and
exploitation. Be it in marketing, research and develop-
ment, pricing decisions, resource allocation, or new
product development, to name but a few areas, assess-
ing the expected value of the possible options requires
experimentation (i.e., trial and error).

When adopting a strategy, managers need to search
for alternative options while earning profits, and are
thus faced with the dilemma of whether to explore or
to exploit. Exploration behaviors involve search for
novel options, experimentation, and innovation. Ex-
ploitation behaviors lean toward refinement, efficien-
cy, selection, and implementation of known strategies

(March 1991). Either searching too much for the most
appropriate option (consistent with exploration) or
committing too fast to an option that may not be opti-
mal (consistent with exploitation) could lead to re-
duced profitability. Understanding whether, why,
and how managers systematically deviate from an op-
timal balance between exploration and exploitation is
therefore an important research question.

Multiarmed bandits are a canonical representation
of reinforcement learning problems. When choosing
between several projects whose profitability is un-
known, with the goal of maximizing earnings over
time, managers are attempting to solve a complex
version of a bandit problem. Solving the problem opti-
mally requires decision makers to balance exploration
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and exploitation, as they have to discover the profit-
ability of the various options while also maximizing
their earnings over time. Bandit problems therefore
provide an interesting vehicle for studying decision
makers’ trade-offs between exploration and
exploitation.

Multiarmed bandits are increasingly replacing A/B
tests as tools to optimize the process of “earning while
learning.” In the recent academic literature, multi-
armed bandit modeling has been incorporated into
real-time website optimization (Hauser et al. 2014,
2009; Urban et al. 2014), online advertising (Schwartz
et al. 2017, Baardman et al. 2019), and pricing prob-
lems (Misra et al. 2019). Liberali and Ferecatu (2019)
propose a real-time optimization method in which a
hidden Markov model is first used to infer consumers’
position in the purchase funnel. This information is
then integrated into a dynamic program that uses
multiarmed bandits to dynamically match website de-
sign to consumers’ information processing style,
dependent on their position in the purchase funnel.
Industry leaders also recommend experimental solu-
tions based on multiarmed bandit problems. Google
content experiments integrate bandit-like experimen-
tation using Thompson sampling (Scott 2010).1 The
experimentation platform Optimizely offers a tool
called the Stats Accelerator, described as a multi-
armed bandit, to maximize click-through rates and
conversions.2 Amazon uses bandit experiments for
real-time multivariate optimization of web content
(Hill et al. 2017).

In this paper, we focus instead on a broader range
of situations in which managers make decisions that
can be conceptualized as multiarmed bandit problems
but cannot be automated. Decision makers are ex-
pected to analyze the known facts, gather missing in-
formation, and formulate and evaluate alternative
strategies before adopting a specific course of action.
How managers solve such dynamic resource alloca-
tion problems is critical to the success of organiza-
tions. Our main contribution is therefore substantive.
We aim to describe, quantify, and explain managerial
exploration/exploitation trade-offs.

We conduct several studies in which subjects play a
three-armed bandit experiment, set up as a prototypi-
cal managerial problem. Although subjects in our ex-
periments are not managers, their decision making is
informative of the trade-offs between exploration and
exploitation expected when managers attempt to solve
dynamic resource allocation problems in the field. Us-
ing controlled experiments rather than observational
data allows us to understand decision makers’ learn-
ing behavior, while eliminating other extraneous fac-
tors inherent in a complex business setting that might
hinder our ability to understand the fundamental
learning mechanisms at play. The bandit problem is

followed by a survey, in which we assess subjects’ risk
aversion, whether they used an analytical or intuitive
style of decision making to tackle the task, and wheth-
er their general tendency is to maximize or to satisfice.
We later use these psychometric traits as predictors of
decision makers’ learning tendencies.

First, to gauge the extent of the potential inefficien-
cies due to suboptimal learning, we compute the
optimal exploration/exploitation strategy using the
Gittins index (Gittins et al. 2011), a widely used policy
for multiarmed bandit problems. We then compare
subjects’ search behavior to the optimal policy. We
find that, on average, subjects forgo over 30% of the
potential revenue, a finding that highlights the conse-
quences of suboptimal behavior.

Second, to describe decision makers’ learning ten-
dencies potentially leading to suboptimal payoffs, we
develop a behavioral model. Over the course of the
bandit experiments, subjects do not only update their
beliefs about the profitability of the options via sam-
pling, but also change their sampling strategies over
time, as they transition between exploration and ex-
ploitation. Subjects might also enter a state of inertia,
where they minimize their cognitive efforts by repeat-
ing their previous choice without much consideration.
We infer decision makers’ unobserved transitions be-
tween exploration, exploitation, and inertia using an
individual-level hidden Markov model. The specifica-
tion is nonstationary and allows the outcomes of the
bandit experiment to impact the transition probabilities
between strategies. The belief-updating process follows
the experience-weighted attraction (EWA) specification
(Camerer and Ho 1999). We thus account for various
consistent behaviors reported in the literature on deci-
sions from experience (Erev and Haruvy 2015); these
include discounting of previous payoffs or of previous
experience with particular options, and how sensitivity
to rewards affects the probability of choice.

Third, our paper builds the necessary blocks to as-
sist managers optimally balance exploration and ex-
ploitation by predicting their idiosyncratic learning
tendencies. Managers’ psychometric traits can explain
their learning tendencies and how they update their
beliefs about the profitability of the various options.
Using data from our main study (Study 1), we link
subjects’ inferred learning patterns to their attitudes
toward risk, their analytical or intuitive decision-
making style, and their tendency to maximize or satis-
fice. This allows us to anticipate their trade-offs
between exploration and exploitation. In terms of the
key results, we provide a rich understanding of how
decision makers’ learning behavior unfolds through-
out the bandit experiment and document extensive
heterogeneity in exploration/exploitation trade-offs.
We find that outcomes that are disappointing relative
to subjects’ expectations affect how they transition
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between exploration and exploitation. Our analysis
shows that subjects are prone to forgetting earlier pay-
offs and to discounting their previous experience.
Risk-averse decision makers are more likely to keep
exploring options than those who are risk seeking.
Maximizers are more sensitive to payoffs than satis-
ficers. Our paper therefore diagnoses the suboptimal
behavioral tendencies of decision makers. It paves the
way to introducing a set of guidelines intended to
help managers find an optimal balance between ex-
ploration and exploitation, possibly counterbalancing
their natural tendencies.

One way to achieve this goal is by carefully design-
ing the learning environment. In two additional stud-
ies (Studies 2 and 3), we investigate how changes in
the learning environment, as reflected by the features
of the bandit experiment, affect decision makers’
exploration/exploitation trade-offs. We focus on one
relevant dimension: the decision time frame. This di-
mension can be easily manipulated in a managerial
setting. In Study 2, we allow subjects to play a multi-
armed bandit experiment twice and document their
“learning-to-learn” behavior over repeated experi-
ments. In Study 3, we vary the planning horizon over
which subjects learn. We show that increasing the
planning horizon and offering decision makers the
opportunity to repeatedly learn how to solve dynamic
resource allocation problems can affect their learning
behavior and bring them closer to the optimal path.

This paper is structured as follows. We introduce
the relevant literature on managerial exploration/
exploitation trade-offs in Section 2. We discuss our ex-
perimental design and describe the data from our ban-
dit experiment in Section 3. In Section 4, we define the
optimal sampling policy using the Gittins index, and
we compare the behavior observed in our first bandit
experiment to the optimal policy. In Section 5, we de-
velop a behavioral model to capture exploration/ex-
ploitation trade-offs and their link with psychometric
traits. We apply our model to the data from the bandit
experiment and discuss the results in Section 6. In Web
Appendix Section WA1, we show how decision mak-
ers’ exploration/exploitation trade-offs are impacted
by changes in the learning environment. In Section 7,
we highlight the theoretical and substantive implica-
tions of our study and conclude by discussing what
additional steps need to be taken to develop a prescrip-
tive theory that can assist managers in their decision
making.

2. Exploration/Exploitation Trade-Offs in
Managerial Learning

We now review the literature relating the two build-
ing blocks of our theoretical development. We first
discuss the literature on exploration/exploitation

trade-offs in bandit problems and elaborate on the
likely impact of psychometric traits on learning be-
havior. We then link our study to the literature on
managerial decision making.

2.1. Reinforcement Learning and
Bandit Problems

In a multiarm bandit problem, a decision maker choo-
ses repeatedly between several options, referred to as
the “arms” of the bandit. The goal is to maximize the
overall rewards over a defined period of time. Each
arm that is chosen generates random rewards from a
stationary distribution unknown to decision makers.
The only way to discover which options may be most
profitable is through sampling. Decision makers
therefore face the classic exploration/exploitation di-
lemma, as they must balance learning about the profit-
ability of each alternative with maximizing overall
rewards over time.

Bandit-style problems are used to model a range of
business- or economics-related decisions, and are
found in various literatures, including operations re-
search (Gans et al. 2007), organizational learning
(March 1991, Posen and Levinthal 2011), and market-
ing (Meyer and Shi 1995, Lin et al. 2015, Shahrokhi
Tehrani and Ching 2019).

Several studies use an experimental paradigm to in-
vestigate how people tackle bandit problems. Most
studies show that subjects use Bayesian updating to
form expectations about the distributions of rewards,
but also exhibit important and systematic deviations
from a Bayesian-updating model. Gans et al. (2007) test
two sets of models to represent how consumers choose
between firms supplying products with different quali-
ty distributions. The two sets of models include heuris-
tic approximations of normative models, and specifica-
tions that stem from the statistical learning literature.
Less complex models provide a closer match to sub-
jects’ choice behavior. Meyer and Shi (1995) show that
decision makers exhibit suboptimal behavior when
tackling Bernoulli bandit problems, including a tenden-
cy to underexperiment with promising options and to
overexperiment with ones that are less promising. The
paper notes that subjects are not optimal learners, but
they are forward looking, albeit over a limited planning
horizon. Moreover, task characteristics such as the
planning horizon and the success rates associated with
the bandit’s arms influence sampling behavior. Horo-
witz (1975) also documents decision makers’ tendency
to overexplore low-performing options, when success
rates are low. Banks et al. (1997) manipulate the struc-
ture of the bandit problem such that the optimal solu-
tion is either myopic or forward looking, and find that
subjects behave in line with these normative predic-
tions. Anderson (2001) sets up more complex bandit
tasks with normally distributed rewards and finds that,
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by comparison with optimal behavior, subjects under-
experiment. Risk aversion associated with diffuse pri-
ors on the distributions of rewards is the likely cause of
this effect. In the cognitive psychology literature,
Steyvers et al. (2009) use a modeling approach to test
whether an optimal model better describes subjects’ be-
havior against several heuristics and find that only 30%
of subjects behave according to the optimal model. Sev-
eral studies in cognitive neuroscience investigate hu-
man performance in bandit problems and how it re-
lates to brain activity (Daw et al. 2006, Cohen et al.
2007, Ahn et al. 2014).

The studies described above compare decision mak-
ers’ choices against models that involve an optimal
balance between exploration and exploitation, but do
not explicitly model subjects’ exploration/exploitation
trade-offs. The latter is the goal of our research.

Several papers use descriptive, model-free measures
of behavior. For instance, Steyvers et al. (2009) defines
the amount of exploration as the number of times a
subject chooses an alternative with fewer successes
and fewer failures than other alternatives. Gans et al.
(2007) use the number of consecutive choices of the
same supplier as a measure of the extent of exploita-
tion. In the organization science and management lit-
erature, several studies define engaging in exploratory
versus exploitative strategies as undertaking nonrou-
tine versus routine tasks (Adler et al. 1999; Benner and
Tushman 2003, 2002), or tasks with long-term versus
short-term orientations (Tushman and O’Reilly 1996).
A stream of literature in cognitive science (Roth and
Erev 1998, Busemeyer and Stout 2002, Biele et al. 2009,
Nevo and Erev 2012, Erev and Roth 2014) models the
probability of moving from exploration to exploita-
tion, albeit assuming different underlying dynamics in
behavior than in the model we propose. This work in-
spired our model development. We compare our be-
havioral model to the above studies in Section 5.

Although relatively little experimental work has
been done on how people solve bandit problems,
many developments have proposed normative solu-
tions to the problem. The canonical solution was intro-
duced by Gittins and Jones (1979). Their proposed ap-
proach involves computing an index for each arm and
choosing the arm with the highest index in every peri-
od. Gittins and Jones (1979) showed analytically that,
assuming agents are risk neutral, this approach is op-
timal for dynamic problems stretching over an infinite
time period, and that it maximizes the expected dis-
counted overall rewards. For problems with finite ho-
rizons, the Gittins index is used as a heuristic.

2.2. Expected Impact of Psychometric Traits
2.2.1. Risk Aversion. Solving a bandit problem in-
volves making decisions under uncertainty; thus, risk
preferences of decision makers are likely to influence

how they learn. Many studies involving bandit prob-
lems focused on analyzing how subjects choose be-
tween a safe option that yields the same reward every
time and a risky option yielding variable rewards. In
this setup, exploration implies risk-seeking behavior,
as it involves willingly sampling options with higher
variability. In behavioral simulations based on popu-
lar reinforcement learning models, March (1996)
shows that, with experience, subjects are predicted to
select less risky options; thus, they learn to be risk
averse. Denrell (2007, 2005) and Denrell and March
(2001) attribute this phenomenon to the “hot stove”
effect, a consequence of the inherent asymmetry be-
tween the impact of good versus bad outcomes. Arms
yielding good outcomes are more likely to be re-
sampled; thus, decision makers will gain a better idea
of their profitability. Bad outcomes decrease the likeli-
hood that an option will be chosen, and therefore a
decision maker has fewer opportunities to discover its
profitability. More risk-averse subjects underexplore
options that (randomly) yield bad outcomes. These re-
sults were corroborated by studies linking neural cor-
relates of reinforcement learning to experienced risk
(Niv et al. 2012). Steyvers et al. (2009) test these effects
using correlational analysis and do not find risk aver-
sion to have an effect on experimental measures of ex-
ploration and exploitation.

Our setup involves choices between options with
different expected rewards, but with similar variabili-
ty in rewards. Here, risk aversion, as diminishing
marginal sensitivity to rewards, is essential in learn-
ing, leading to more extensive exploration.

2.2.2. The Tendency to Maximize or Satisfice. The
heuristics investigated in bandit experiments are con-
sistent with a “satisficing” model (Gilboa and Pazgal
2001, Gans et al. 2007), in line with Simon (1959). Such
heuristics assume that subjects define a target, or an
aspiration level, and keep exploiting an option as
soon as it exceeds that target. A satisficer’s explora-
tion/exploitation trade-offs are inherently different
from the learning behaviors of a maximizer. Maximiz-
ers strive to find the option with the highest expected
rewards (Schwartz et al. 2002), and exploit only when
the option they believe will lead to optimal rewards
has been identified. Therefore, we expect maximizers
will explore more than satisficers.

2.2.3. Analytical vs. Intuitive Decision-Making Styles.
A bandit problem involves maximizing a criterion. It
can be regarded as an expression of subjects’ cognitive
ability. Focusing specifically on information about
payoffs might lead to better rewards than learning in-
tuitively about the options (Toplak et al. 2011). Man-
agers’ decision-making style could influence their
strategic choices, as well as their performance in the
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learning task. Novak and Hoffman (2009) established
that decision makers exhibit differences in thinking
styles across tasks. We thus investigate how our sub-
jects’ analytical versus intuitive decision-making style
impacts their learning tendencies when they are un-
dertaking the experimental task.

2.3. Managerial Decision Making
Consumer-oriented learning models have relaxed the
assumption that behavior is fully rational, but for
managerial decision making, this is still a prevalent
view, with a few notable exceptions (for a review, see
Goldfarb et al. 2012). Using a structural model that
embeds the cognitive hierarchy model of Camerer
et al. (2004), Goldfarb and Yang (2009) show that, dur-
ing the dot-com crash, managers’ strategic thinking
ability increased tech firms’ chances of survival. The
characteristics of managers affect firm performance
and are key determinants of their ability. Goldfarb
and Xiao (2011) show that managers who are better
educated and have more experience are more likely to
enter less competitive markets. Firms led by more
able managers are more likely to stay in business and
achieve higher revenues, provided that they survive.

In this study, we extend the literature on manageri-
al decision making and focus on modeling explora-
tion/exploitation trade-offs. We document how
decision makers’ psychological profiles and changes
in the learning environment affect such trade-offs.
These are necessary steps when attempting to find de-
cision makers suited for various managerial tasks, or
to nudge them toward the optimal path.

3. The Bandit Experiment
This section describes our experimental design, in
which subjects tackle a bandit problem (or “bandit
experiment”).

We conduct a laboratory study (Study 1) where we
analyze subjects’ learning behavior in a tightly con-
trolled environment, using a student sample. Al-
though a student sample is not representative of a
population of managers, the underlying psychological
mechanisms we investigate here are similar. We
expect the marginal impact of risk aversion on explo-
ration/exploitation behavior to be similar across dif-
ferent populations, even if the distribution of risk
aversion differs between our subjects and managers.
Indeed, several studies use laboratory experiments in
which subjects from a student or a general population
undertake managerial tasks. Amaldoss et al. (2000)
conducted two such laboratory experiments to under-
stand how different types of strategic alliances are
formed. Using student samples, Cui and Mallucci
(2016) investigated how coordination of a marketing
channel is affected when channel members’ decision

making is impacted by fairness concerns. An addition-
al benefit here is that the relatively homogeneous
sample of students makes it easier to identify any in-
dividual differences in behavior, driven by psycho-
metric traits. Therefore, we use the data gathered in
Study 1 to validate our model describing exploration/
exploitation trade-offs, and to document the impact of
psychometric traits on learning behavior.

In addition to Study 1, we conduct two online ex-
periments, with more diverse samples, to test whether
changing specific features of the learning environ-
ment, such as changing the planning horizon and
offering repeated opportunities to learn, impacts deci-
sion makers’ learning behavior. These studies are pre-
sented in Web Appendix Section WA1.3

In this section, we introduce the experimental de-
sign used across the three studies. The specific manip-
ulations in Studies 2 and 3 are discussed in Web
Appendix Section WA1.

3.1. Experimental Design and Procedure
Students from a large European business school par-
ticipated in our laboratory study. We recruited sub-
jects by posting an announcement on the university’s
recruitment platform, inviting students registered
with the subject pool to take part in an experiment on
individual decision making, in exchange for monetary
compensation.

We organized 15 laboratory sessions, with about six
subjects per session. Students completed their tasks in
separate soundproof cubicles, each with his or her
own computer. On the screen in front of each subject
was the first page of his or her task, and all other com-
puter programs were disabled so that the subject
could not use any tools during the study. Upon com-
pletion of the study, subjects’ compensation was re-
corded and paid by bank transfer.

Subjects were asked to play a three-armed bandit ex-
periment for 100 rounds. They were told to imagine
that they were product managers for an online store, in
charge of new product research and development. The
three arms of the bandit problem represented three on-
line banners advertising a product prototype they pro-
posed to introduce in the market. Subjects were not
given any information about consumers’ interest in the
product and had a 100-day period in which to evaluate
the business potential of their product.

Every day, they could advertise their product using
one of the three banner ads. At the end of the day,
subjects were informed of the number of clicks made
by prospective customers on their chosen banner. The
number of clicks was used as a proxy for consumers’
interest in the product. The following day, the product
manager could select a different banner ad.

The product’s potential would be judged on the to-
tal number of times prospective customers clicked on
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the ads over the test period. The objective was to max-
imize the total number of clicks, hence demonstrating
market interest. To do so, subjects needed to find the
banner ad that would generate the most clicks per
day, on average. Their payment was proportional to
the cumulative number of clicks generated through-
out the business task. This feature ensured that the ex-
periment was incentive aligned.

We showed subjects three buttons, labeled banners
A, B, and C, corresponding to the three arms of the
bandit. The three alternatives were shuffled at the start
of the experiment, so no participant was able to know a
priori which arm would yield the highest expected re-
ward. Before the main task, subjects were given a
10-round trial period to familiarize themselves with the
setting, after which the buttons corresponding to the
banner ads were reshuffled for the main task.

We linked each button to a random number generator
that generated rewards between 0 and 100. The rewards
followed normal distributions with expected values of 65,
50, and 35, and a standard deviation (SD) of 15 for all the
arms. Throughout our analysis, we label arms 1, 2, and 3
those with expected values of 65, 50, and 35 clicks respec-
tively. Therefore, arm 1 is high performing, leading to the
highest expected rewards, whereas arms 2 and 3 are low
performing, leading to lower expected rewards on aver-
age. Subjects were informed that the rewards vary be-
tween 0 and 100 for all three banner ads, and that the
three banner ads have similar and constant variation in re-
wards. We stressed in the instructions that the distribu-
tions behind the options remained constant throughout
the exercise. Subjects were not informed about the shape
of the distribution.

Prior to the experiment, we drew five sets of experi-
mental stimuli from the distributions above and ran-
domly assigned a set of draws to each subject. Given
that our study took place in a physical laboratory
across several days, this minimized the chance that
subjects would have learned the optimal strategy
from previous participants. We ensured that the five
sets of draws led to similar optimal policies, to be able
to compare subjects’ learning behavior. Moreover, we
ensured that all rewards were in the gains domain, as
losses might lead to different patterns of behavior
(Tversky and Kahneman 1992, Erev et al. 2008).

To increase the ecological validity of our study, we
used a design that was based on a choice between
three normally distributed arms, rather than using a
one-armed or two-armed Bernoulli bandit, typically
used in bandit experiments (Meyer and Shi 1995,
Gans et al. 2007, Steyvers et al. 2009). We designed the
scenario to portray a business situation in which ex-
ploration/exploitation trade-offs are salient.

We chose the parametrizations of the distributions
to ensure one of the arms would be a rather clear win-
ner. We let participants play for 100 rounds to ensure

that the exploration and exploitation stages were suffi-
ciently long. We expected significant variation in be-
havior, necessary for the parametric identification of
our behavioral model.4

We expected subjects to first click all three buttons
to gather information about the expected payoffs for
each alternative (exploration), and then to identify
with increasing certainty the button with the highest
expected reward and commit to that option (exploita-
tion); this is similar to the strategy followed by the
subject depicted in Figure 1.

In the second stage of the experiment, subjects were
asked to complete a psychometric questionnaire. To elic-
it their risk preferences, we used the “bomb test,” vali-
dated by Crosetto and Filippin (2013). The incentive-
aligned task elicits subjects’ constant relative risk aver-
sion (CRRA) coefficient.5 To elicit subjects’ maximizing
or satisficing tendencies, we used a short version of the
scale developed by Schwartz et al. (2002). The short scale
consists of six items and was validated by Nenkov et al.
(2008). We used a 20-item scale developed by Novak
and Hoffman (2009) to determine subjects’ situation-
specific thinking style. This scale identifies whether sub-
jects use a more analytical or intuitive approach when
tackling a task. This scale includes two 10-item sub-
scales, a “need for cognition” scale and a “faith in in-
tuition” scale.6 We report summary statistics and scale
reliability measures in Web Appendix SectionWA2.

Figure 1. Screenshot of the Experimental Platform, with
Choices and Rewards for One Subject

Notes. The figure shows the experimental interface (partial screen
capture). Subjects were asked to maximize the overall rewards, over
100 rounds. As they chose between options, subjects received infor-
mation on the payoffs from their chosen option and their cumulative
payoffs. This subject sampled all options for the first 9 rounds (explo-
ration process), and then focused on ad A for the next 9 rounds
(exploitation process). We have added the arrow to indicate the se-
quence of results. ECU, experimental currency units. One click by
prospective customers is worth 1 ECU.
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3.2. Descriptive Statistics and Data Patterns for
Study 1

Eighty-nine students participated in Study 1 (Mage �
21, 28% male). The experiment took an average of 10
minutes, lasting at least 4.5 minutes and no more than
25 minutes. All students received a payment of EUR 1
for showing up, plus their cumulative rewards from
the risk aversion task and the bandit problem. The av-
erage reward for the experimental task was EUR 4.93
(SD � EUR 0.22), at an exchange rate of 1,500 clicks to
EUR 1. The average reward for the risk aversion task
was EUR 0.68 (SD � EUR 0.78). The total average re-
ward was EUR 5.62 (SD � EUR 0.84).7

We now document the data patterns describing how
subjects chose between the options. As our goal is to
understand behavior, we focus on the patters that are
illustrative of the underlying learning process (Shmue-
li 2010). During the first 10 rounds of the bandit experi-
ment, subjects switched between options from one
round to the next 59.2% of the time, whereas in the last
10 rounds, they did so only 22.1% of the time (see Fig-
ure 2). This suggest that, early on, subjects sampled
different arms, presumably in an attempt to identify
which banner ad to use. Toward the last rounds of the
bandit experiment, subjects appear increasingly confi-
dent in their choice of the best arm, choosing it consis-
tently. Two subjects never sampled all arms.

Subjects repeated their previous choices 63.1% of
the time. This suggests significant state dependence in
choice behavior, which we specifically model in
Section 5.

Whereas subjects selected the high-performing arm,
leading to the highest expected reward about 33% of
the time during the first few rounds (equal to chance),
after 40 rounds, the hit rate quickly increased to above
60% (see Figure 3). In the second part of the bandit

experiment, the hit rate stagnated at around 70%. The
fact that the hit rate remained stable and was below
100% suggests that a significant proportion of subjects
followed suboptimal learning paths.

Figure 4 shows that the lower the reward received
in the current round, the more likely subjects were to
choose a different option in the next round. This effect
appears even stronger in the last part compared with
the first part of the experiment. Presumably, subjects
in exploitation mode who receive disappointing re-
wards tend to switch to a different arm. The logistic
regression coefficient of lagged rewards on the proba-
bility of switching options is −0.057 (p < 0.01) over the
first 50 rounds, and −0.063 (p < 0.01) over the last 50
rounds. This suggests that low and high rewards im-
pact in different ways the learning patterns of decision
makers: disappointing results with one arm seem to
induce subjects to explore other arms more.

At the aggregate level, the correlation between sub-
jects’ overall rewards and the total number of switches
between arms is strongly negative at −0.74 (p < 0.01).
This suggests that many subjects might overexplore,
switching between arms too often instead of exploit-
ing the high-performing arm 1.

The descriptive evidence presented here also shows
that subjects paid attention to the task and strove to
identify the best option. Subjects spent a decreasing
amount of time per round as they played the bandit
experiment, from an average of 1.9 seconds per round
in the first 10 rounds to 0.9 seconds in the last 10
rounds. Figure 5 depicts the choices of the first three
subjects and the time spent on each choice.

In 22.4% of the rounds, subjects spent less than half
a second on their choice, and in 92.4% of those rounds,
subjects reinforced their last choice. This again sug-
gests that choices are state dependent. It would be

Figure 2. Percentage of Subjects Switching to a Different
Arm in Each Round

0

25

50

75

100

0 25 50 75 100

Rounds

P
er

ce
nt

ag
e 

sw
itc

he
s

Notes. Subjects sampled different arms to a higher extent early on.
Choices become more consistent in the later rounds of the bandit ex-
periment, with subjects repeatedly choosing the same option.

Figure 3. Percentage of Subjects Choosing the High-
Performing Arm 1 in Each Round
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Note. The percentage increases over rounds, but remains below 100%
even after 100 rounds, showing that there is room for improvement
in subjects’ learning strategies.
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virtually impossible for subjects to update their ex-
pectations about the profitability of the options in
such a short amount of time.

The rewards subjects received in the previous
round correlate with the time they spent on deciding
between arms. The higher the previous reward, the
less time they spent on their decision in the following
round (cor(Laggedrewards, Time spent) � −0:12, p < 0:01).

Subjects spent more time on the choice task in the
round following disappointing rewards.

4. The Optimal Path
To highlight the importance of understanding mana-
gerial learning, we quantify the extent of potential
payoffs subjects forgo, as they attempt to balance ex-
ploration and exploitation. To do this, we compute

Figure 4. Percentage of Subjects Switching to a Different ArmAcross the Distribution of Previous Rewards
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Notes. The lower the previous reward, the more likely subjects are to switch to a different arm. This effect appears stronger in the last 50 rounds
of the bandit experiment, compared with the first 50 rounds, probably because disappointing rewards have a stronger effect in the exploitation
phase than in the exploration one.

Figure 5. Choice of Arm and Time Spent on the Decision for Subjects 1, 2, and 3, Exhibiting Different Learning Patterns

Note. Subjects tend to spend more time to decide on rounds in which they switch between arms.
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the optimal path they could have pursued instead. We
briefly discuss the optimal path computation for the
multiarmed bandit experiment played by subjects,
then compare subjects’ overall rewards and their sam-
pling patterns to the optimal learning policy.8

4.1. Optimal Path Computation
In a multiarmed bandit problem, a decision maker
samples several options (or “arms”) multiple times.
The arms are indexed by j � 1, … , J. Each arm deliv-
ers random, normally distributed rewards Xj, with
unknown mean µj, variance σ2j , and precision
Aj � 1=σ2j . In our experimental task, the mean rewards
of the three arms are unknown to subjects and are set
at µj � {65,50,35}. The standard deviation is assumed
to be known and equal for all of the three arms, set at
σX � 15. The purpose is to maximize the total dis-
counted rewards over a time frame T. We set the
discount factor to a � 0.99, a common value in many
bandit experiments with humans. The discount factor
reflects the weight companies put on future outcomes
and can be application-specific.9

Instead of solving a J-dimensional dynamic pro-
gram to optimally find the path that maximizes ex-
pected discounted rewards, Gittins and Jones (1979)
proposed an optimal solution using an index policy.
An arm-specific index Itj is computed at every round t.
Gittins and Jones (1979) and Gittins et al. (2011)
showed that for an infinite-horizon problem, at each
round t, it is optimal to choose the arm with the high-
est index. Such a policy would maximize the expected
discounted rewards, assuming agents are risk neutral.
For a finite time horizon, the Gittins index is a

heuristic resulting in a near-optimal policy for multi-
armed bandits with normally distributed rewards
(Lattimore 2016).10

Figure 6 plots the evolution of the Gittins indices,
the posterior mean rewards, and the value of explora-
tion for one set of draws used in our experiment, as-
suming an agent follows the optimal path.

The value of exploration is the difference between
the Gittins index computed for each arm and the pos-
terior mean rewards. In the first few rounds, uncer-
tainty is high and there is value in exploring. The
Gittins indices plotted in Figure 6 have higher values
in earlier rounds compared with later rounds. As un-
certainty decreases, the value of exploring different
arms decreases.

4.2. Optimal Path vs. Actual Behavior in Study 1
We now discuss how subjects’ learning patterns differ
systematically from optimal exploration/exploitation
trade-offs, and whether and how their overall rewards
differ from optimal reward levels, using the data gath-
ered in Study 1. Note that we withheld certain pieces
of information that subjects would have needed to
compute Gittins indices, and subjects were not al-
lowed to use any tools throughout the experiment.
Therefore, subjects could not compute indices and fol-
low the optimal path strictly. Our main goal here is
thus to quantify the extent of potential payoffs they
forgo, payoffs that would be obtained by following an
optimal learning policy.

4.2.1. Comparison of Overall Rewards. Assuming de-
cision makers have perfect information about the

Figure 6. The Evolution of the Gittins Indices, the Posterior Mean Rewards, and the Value of ExplorationWhen Agents Follow
the Optimal Path

Gittins index Posterior mean Value of exploration

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

30

60

90

Round

V
al

ue

Arms 1 2 3

Notes. An agent following the optimal path starts by sampling each arm at least once, in random order. Throughout the bandit experiment, the
agent samples low-performing arms 2 and 3 seven times. Starting round 26, the agent repeatedly samples the high-performing arm 1 through to
round 100. The value of exploration is high initially and decreases as the agent gathers more information about the distributions of rewards.
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distribution of rewards behind each arm, they would
systematically select the high-performing arm. At the
other extreme, a decision maker not engaging in learn-
ing would sample the options randomly throughout
the bandit experiment. We compute overall rewards
per subject under the above benchmarks using the ex-
perimental draws and average these overall rewards
across subjects. We use the range between the perfect
information and the random benchmarks to quantify
how subjects in our experiment deviate from the opti-
mal policy. Table 1 reports the results of this analysis.

Following the optimal policy leads to overall re-
wards of 6,379 clicks (SD � 156 clicks) on average,
with returns close to 88.3% of the perfect-information
benchmark. Subjects in our experiment earn overall
rewards of 5,890 clicks (SD � 336 clicks) on average.
Consider the overall rewards under random sampling
as the lower bound and the overall rewards under
optimal learning as the upper bound of potential reve-
nues in the experimental task. In Table 1, we show
that the relative efficiency of the experimental rewards
is 63.2%. Therefore, on average, subjects in Study 1
forgo 36.8% of potential revenues.

There is considerable variation in the overall re-
wards earned by subjects. Figure 7 shows significant
overlap between the distributions of experimental
rewards and those of the optimal and the random
benchmarks. In fact, for 3.4% of subjects, overall re-
wards are above the optimal benchmark. At the lower
end, for 2.3% of subjects, overall rewards acquired in
the experiment are below the random benchmark.

4.2.2. Comparison of Sampling Behavior. For each
subject, we compute the percentage of low-performing
arms 2 and 3 sampled throughout the experimental
task to give us a descriptive measure of the actual ex-
tent of exploration. Subjects sample low-performing
options 31.9% of the time on average (standard error
(SE) � 0.017). We compare this statistic to the percent-
age of low-performing arms sampled under optimal
behavior to give us a descriptive measure of the optimal
extent of exploration. Under optimal behavior, a deci-
sion maker samples low-performing arms 8.3% (SE �
0.004) of the time on average. In line with Horowitz

(1975), our results show that the majority of subjects
oversample low-performing options. The results are in
line with those of Steyvers et al. (2009), who found that
the optimal model best explained behavior for only
30% of the subjects. We noted above that under a Git-
tins policy, agents are assumed to be risk neutral.
Relaxing this assumption by using a Whittle index
(Whittle 1988, Lin et al. 2015, Shahrokhi Tehrani and
Ching 2019) to compute the optimal path would lead
to more extensive sampling of low-performing arms.

To describe decision makers’ trade-offs between ex-
ploration and exploitation in more detail, we propose
a behavioral model in the next section.

5. The Behavioral Model
5.1. Model Overview
We use a dynamic modeling approach to characterize
the reinforcement learning behavior of decision mak-
ers. In line with our expectations, we find evidence to
support the view that subjects engage in exploration/
exploitation trade-offs, as they attempt to reach the
overarching goal of maximizing their overall rewards
over the given time frame. The descriptive evidence
presented in Section 3.2 suggests extensive state de-
pendence in subjects’ choices, as they likely enter a
state of inertia.

In exploration, subjects’ goal is to learn the profit-
ability of the various options. The sampling process is
highly probabilistic and only loosely related to the ex-
pected payoff of the arms; subjects need to sample all
options repeatedly and construct beliefs about the
rewards distributions associated with each arm.

In exploitation, the objective is to repeatedly use the
option the subject believes will lead to the highest
expected payoff at every round. This strategy is there-
fore more deterministic than an exploration strategy,
although choices still include a random component. If
a subject mostly chooses the high-performing arm but
occasionally samples the second best-performing arm,
they will be estimated in exploitation, because choices
are not fully deterministic and subjects can make mis-
takes. At the extreme, when two options are estimated
to yield similar expected rewards, switching between

Table 1. Benchmark Comparisons: Difference in Average Overall Rewards with Experimental vs. Optimal Learning

Average overall rewards
(in clicks)

Improvement over
random choice (%)

Efficiency vs. perfect
information (%)

Efficiency vs. optimal
learning (%)

Random 5,049 0 0 0
Experimental 5,890 16.7 55.8 63.2
Optimal learning 6,379 26.3 88.3 100
Perfect information 6,555 29.8 100 —

Notes. Improvement over random choice is computed as (ORPolicyi −ORRandom)=ORRandom. Efficiency versus perfect information is computed as
(ORPolicyi −ORRandom)=(ORPerfect Info −ORRandom). Efficiency versus optimal learning is computed as (ORPolicyi −ORRandom)=(OROptimal −ORRandom).
The termOR stands for average overall rewards.
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them at random, while avoiding the other options,
can still be considered as exploitation.

The choice process conditional on using an explora-
tion or an exploitation strategy is partly driven by the
expected rewards. Several heuristics are likely to in-
fluence how subjects update their beliefs about the
profitability of the options, and thus their choice
behavior. Subjects might have various degrees of sen-
sitivity to rewards, they might discount previous
payoffs, or they might underestimate the amount of
information accumulated about each option.

In a state of inertia, subjects do not update their be-
liefs about expected rewards, but simply reinforce
their last choice of arm. Several studies made on deci-
sions from experience show that subjects’ choices
reveal a strong positive correlation, which implies
inertia (Erev and Haruvy 2005). Strong state depen-
dence is particularly apparent in cases where the deci-
sion in previous rounds required sustained cognitive
effort and the cost of updating beliefs is higher than
the expected benefit (Erev and Haruvy 2015).

The exploitation and the inertia states involve con-
ceptually distinct psychological mechanisms. Howev-
er, as we observe only choices and rewards, the
choices in exploitation and in inertia are close to ob-
servationally equivalent. We discuss here the data pat-
terns identifying whether subjects’ choices are likely
driven by exploitation or by inertia.

The model infers that subjects who repeatedly choose
the arm with the highest expected payoff are initially in
exploitation and switch to inertia after several rounds
of repeating the same choice. This is in line with the pat-
terns in the data observed in our experiment, particu-
larly in terms of time spent on choices (see Figure 5),
with subjects spending a decreasing amount of time on
each choice as they repeatedly reinforce the previous
choice of arm.

Descriptive evidence presented in Section 3 sup-
ports an inertia state. In 22.4% of rounds, subjects in
our study spend less than half a second on decisions.
In 92.4% of those rounds, they reinforce their last
choice or arm. This suggests that subjects reinforce
their last choice without updating their beliefs about
the expected payoffs. Therefore, inertia can explain a
sampling strategy where, after reaching exploitation,
a subject keeps choosing an arm despite increasing ev-
idence that the expected rewards are inferior to those
of the arms not chosen. It is unlikely to rationalize
such behavior under the exploitation state.

Even when in exploitation, subjects can switch be-
tween arms and occasionally choose lower-performing
arms, because choices are stochastic and driven by the
expected payoffs of each arm. Subjects cannot switch
between arms when in inertia, because here choices
are deterministic and independent of expected payoffs.
To illustrate the data patterns that differ between ex-
ploitation and inertia, consider the following: if, after
initial exploration, a subject mostly chooses the high-
performing arm over a few dozen rounds, but occasion-
ally the subject samples the second-best-performing
arm, this subject is most likely in exploitation. If, after
initial exploration, a subject chooses only the high-
performing arm over a few dozen rounds, the model
may infer that the subject is initially in exploitation, and
after several rounds of exploitation, the subject is likely
to switch to the inertia state.

State dependence emerges as a likely component
necessary to explain learning behavior, both theoreti-
cally and based on the data patterns presented in Sec-
tion 3. In the next section, we compare various model
specifications and focus on in-sample fit measures to
determine whether the inertia state is instrumental in
understanding behavior. We show this is indeed the
case. We investigate the predictive performance of the
models and discuss under what conditions a model
including the inertia state is useful to predict explora-
tion/exploitation trade-offs.

The three states of exploration, exploitation, and in-
ertia, which we also refer to as “sampling strategies,”
are unobserved. We assume that, throughout the ban-
dit experiment, subjects transition between these
sampling strategies. We observe only which options
subjects sampled and the associated rewards. Our
modeling approach uses a hidden Markov model to
uncover subjects’ latent transitions between the three
sampling strategies, and their choices conditional on
the strategy implemented in each round.

Outcomes of the bandit experiment can trigger tran-
sitions between sampling strategies. Descriptive evi-
dence in Figure 4 indicates that the lower the rewards
obtained, the more likely subjects are to choose a differ-
ent option. This suggests that subjects are more likely
to change their strategy after receiving disappointing

Figure 7. The Distribution of Overall Rewards Earned by
Subjects Throughout the Experimental Task, Plotted Against
the Random, Optimal, and Perfect Information Benchmarks
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Notes. The box-and-whisker plots represent the full distributions of
the measures. The means (grey dots) and confidence bounds are
overlaid.
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payoffs (Ansari et al. 2012). Nevo and Erev (2012) show
that individuals are more likely to exit the inertia state
when the outcomes are surprising enough to engender
a change of strategy, and outcomes that are disappoint-
ingly low surprise subjects. In line with the “hot stove”
effect (Denrell and March 2001; Denrell 2007, 2005),
subjects shy away from options that randomly generate
low outcomes and do not learn effectively about their
payoff distributions. Arms with better outcomes have a
higher probability of being chosen, and thus increase
learning about the distribution of their rewards. Meyer
and Shi (1995) find that subjects are more likely to
switch away from an arm after a disappointing out-
come, to a higher degree than would be predicted by a
Bayesian learning model.

Although our behavioral model is flexible in allow-
ing for any transition patterns, we expect disappoint-
ing outcomes to affect changes of state in different
ways, depending on the sampling strategy subjects
have been using. For instance, we expect disappoint-
ing outcomes to increase the likelihood that subjects
stay in exploration and to decrease the likelihood of
them moving from either exploration or exploitation
to inertia, because they pay more attention to rewards.
We also expect a disappointing outcome to decrease
subjects’ probability to remain in a state of inertia.

Our proposed behavioral model has two compo-
nents: (1) subjects’ state transitions between sampling
strategies and (2) subjects’ choice behavior conditional
on the sampling strategy used. We model decision
makers’ behavior at the individual level to account for
individual heterogeneity versus latent dynamics in
sampling strategies and to evaluate the impact of psy-
chometric traits on learning.

5.2. Transitions Between Sampling Strategies
We assume K � 3 latent states of exploration (k � 1), ex-
ploitation (k � 2), and inertia (k � 3), reflecting subjects’
sampling strategies. Subjects transition between these
sampling strategies over time. The strategy used by de-
cision maker i at round t, Kit, evolves over time follow-
ing a first-order Markov decision process with nonsta-
tionary and heterogeneous transition probabilities.

The nonstationary probability of transitioning from
state k at round t − 1 to state k’ at round t follows a
multinomial logit model:

qikk′(t−1)t �

exp(β0ikk′ + β1kk′Dt−1)
1 + ΣK−1

m�1exp(β0ikm + β1kmDt−1) ,

for k � 1, :::,K, k′ � 1, :::,K − 1;

1
1 + ΣK−1

m�1exp(β0ikm + β1kmDt−1) ,

for k � 1, :::,K, k′ � K:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Parameters β0ikk′ represent individual and state-
specific propensities to transition between sampling
strategies. The inertia state (k � 3) is used as the
baseline, and the utility of transitioning from state k
into inertia is set to zero for identification purposes.
State-specific parameters β1kk′ capture the impact of
the time-varying covariates Dt−1 on the transition
probabilities. Note that β1kk′ are not individual spe-
cific; thus, we implicitly assume that the heterogene-
ity in transition behavior is captured by the baseline
propensities.

The time-varying covariate Dt−1 classifies the out-
come of the bandit experiment at round t − 1 as either
disappointing or encouraging relative to the subject’s
expectations. Expectations EVt−1 are operationalized
as the running average of each subject’s payoff up to
and including the previous round t − 2.

The variable Dt−1 is defined as

Dt−1 � I(−∞,0)(EVt−1 −Xt−1) (2)

The term I(−∞,0)(a) is an indicator function that classi-
fies an outcome as disappointing (equal to one) when
a ∈ (−∞, 0) and encouraging (equal to zero) other-
wise.11 This specification is in line with the work of
Erev and Haruvy (2015), who show that previous
losses relative to players’ expectations impact their
strategic choices. In Roth and Erev (1998), choice rein-
forcement is shown to depend on the difference be-
tween payoffs and an updated reference point. This is
consistent with the work of Nevo and Erev (2012),
who show that when players have access to feedback
on the outcomes of earlier options, their future behav-
ior is impacted by payoffs they have forfeited by not
taking those options. The result is reinforced in the
work of Ansari et al. (2012), who show that in a multi-
player game, using a low-performing option in the
previous round could trigger a transition between the
rules used by subjects to learn about the profitability
of the options.

As in the paper by Nevo and Erev (2012), we as-
sume that all subjects start the bandit experiment
using an exploration strategy; thus, the initial proba-
bilities of exploration, exploitation, and inertia are giv-
en by π0k � [1, 0, 0], respectively.

5.3. Belief Updating
Descriptively, a bandit problem as a general class of
reinforcement learning can be modeled using a combi-
nation of cumulative and averaged reinforcement
learning specifications.

In cumulative reinforcement learning, options have
reinforcement utilities that increment cumulatively
with current rewards and impact the choice likeli-
hoods. In averaged reinforcement learning, payoffs
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are averaged rather than cumulated over time, such
that reinforcement utilities are bounded by the payoff
distributions.

We use the EWA model (Camerer and Ho 1999),
which allows for a mix of the two types of reinforce-
ment learning. Ho et al. (2006) note the appropriate-
ness of the EWA specification for modeling how
managers learn over time. Rapoport and Amaldoss
(2000) use the EWA model to study whether manag-
ers making investment decisions engage in iterative
elimination of strongly dominated strategies, or
mixed strategies. The specification can converge to
reinforcement learning that is either entirely aver-
aged or entirely cumulative, if the data provide evi-
dence to support it.

For subject i, at time t, an option j has a numerical
attraction Aij(t). Each option’s attraction is updated
with the experience at time t as

Aij(t) � φiNi(t− 1)Aij(t− 1) +Xij(t)
Ni(t) ,

Ni(t) � ρiN(t− 1) + 1,
(3)

where φi decays past attractions, ρi decays past experi-
ence with the arm, and N(t) can be interpreted as the
number of “observation equivalents” of past experience.

We assume initial attractions Aij(0) to be linked to
prior beliefs. In the experiment, we inform subjects
that rewards are limited between 0 and 100; therefore,
a reasonable prior for Aij(0) would be 50. Prior experi-
ence reflects the strength of belief in the prior distribu-
tion. We set Ni(0) to one, and assume that the prior
belief had a strength of one “experience equivalent.”12

When Ni(0) � 1=(1− ρi) and φi � ρi, the EWA model
is reduced to an averaged reinforcement learning
model (Sarin and Vahid 1999, Busemeyer and Stout
2002). When Ni(0) � 1 and ρi � 0, the model reduces to
the cumulative reinforcement learning model (Roth
and Erev 1995).

The attractions of the arms are computed as a mix
of cumulative performance and average performance.
With 1 > φi > ρi, attractions fall between running aver-
ages and the running total. When two arms perform
equally well, the arm selected more frequently is rated
somewhere between equally as good as and twice as
good as an arm that has been drawn half as much.
This shows that subjects focus on arms that have been
vetted before, valuing their experience with the arms.
The reverse is true when 1 > ρi > φi. When two arms
perform equally well, the more frequently sampled
arm is rated between half as good and equally as
good as the arm that has been drawn half as much.
Subjects focus on exploring arms not vetted sufficient-
ly. This property of the model is relevant in our bandit
problem, particularly for early choices.

5.4. Choice Probabilities Conditional on
Subjects’ Beliefs

The probability that subject i chooses arm j at round t,
pijt, is a function of the attractions at round t − 1 and
follows a logit specification:

pijt � exp(λiAij(t − 1))∑J
l�1exp(λiAil(t − 1))

· (4)

Conditional choice probabilities are equivalent to logit
transformations of the attractions of options, similar to
a multinomial logit model widely used in marketing
(Ho et al. 2006, Cui and Mallucci 2016). The positive-
definite parameter λi captures subjects’ sensitivity to
attractions, and therefore to rewards obtained. As λi

increases, the arm with the highest attraction is more
likely to be chosen. The heterogeneity in λi can be
viewed as differences in subjects’ sensitivity to re-
wards. Web Appendix Section WA5 further describes
the evolution of attractions and their impact on choice
probabilities in the EWAmodel.

5.5. Choice Conditional on Sampling Strategies
5.5.1. Choice Under Exploration. When using an ex-
ploration strategy, subjects learn about the profitability
of the options by sampling them. Following Equation
(4), this implies that we expect the reward sensitivity
parameter λExplore to be close to zero, as beliefs about
the profitability of each option do not strongly impact
choice. We specify λExplore at the aggregate level.

5.5.2. Choice Under Exploitation. When in exploitation,
subjects focus on maximizing the expected payoffs. The
attractions of each alternative impact the choice proba-
bilities, following Equation (4). The individual-level sen-
sitivity parameter, λExploit

i , is expected to be higher than
λExplore, but not infinite (to allow some randomness even
in exploitation). For identification purposes, we impose
an order constraint on the two sensitivity parameters,
such that λExplore < λ

Exploit
i .

5.5.3. Choice Under Inertia. In inertia, subjects rein-
force the previous choice. The choice probabilities are
specified as

pInertiaijt � I(Jt � Jt−1), (5)

where I(·) is an indicator function, taking a value of
one when the arm chosen is the same as the one cho-
sen in the previous round and zero otherwise.

Because subjects do not focus on realized payoffs
and do not update their beliefs about the arms’ prof-
itability, the inertia state allows them to keep sam-
pling low-performing arms, even when there is
increasing evidence that these arms are indeed low
performing. Once subjects exit inertia, they update
their beliefs about the profitability of the options by
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discounting the entire history of payoffs and follow
an exploration or an exploitation strategy when mak-
ing their choices.

In our setup, choice probabilities conditional on
sampling strategies come from different distributions.
Whereas choice probabilities in exploration and ex-
ploitation come from the same distribution, but with
different parameters, choice probabilities in the inertia
state have a degenerate distribution. Therefore, our
model is effectively a hidden Markov mixture of
experts model (Ansari et al. 2012).

5.6. Heterogeneity and the Impact of
Psychometric Traits

We allow for heterogeneity in the belief-updating pro-
cess and in the propensities to transition between
sampling strategies, linked to decision makers psycho-
metric traits. This ensures that we properly disentangle
learning dynamics from variation between subjects. All
individual-level parameters, {β0ikk′ }, λexploit

i , ρi, and φi,
are gathered in vec(δi), and vary following a multivari-
ate normal distribution, with mean µδi

, and a full co-
variance matrix Σ. We transform the elements in
vec(δi) such that each component varies over the real
line, while certain individual-level parameters are
bounded.13 We break down the dependency between
the state-specific group-level parameters and the
individual-level component to ensure proper identifi-
cation of the model parameters at both layers of the
hierarchy. We sample individual-level parameters us-
ing a noncentered reparametrization (Betancourt and
Girolami 2015):

δi � µδi
+ LΣξi,

µδi
� Γzi, (6)

where LΣ is the Cholesky factor of the covariance ma-
trix Σ, and vec(ξi) ~N(0, 1). This effectively shifts the
correlation between the data and the parameters to the
hyperparameters. We gather vectors ξi, which are un-
correlated, in the Ξ matrix. We decompose the covari-
ance matrix into a location and a scale prior, such that
Σ � diag(τ)Ωdiag(τ). The term diag(τ) is a diagonal
matrix of scale parameters and Ω is the correlation ma-
trix. The term zi is a vector of the mean-centered psy-
chometric variables and includes an intercept. The ma-
trix of coefficients Γ reflects the impact of the
psychometric variables on the behavioral parameters.14

Conditional on the chosen sampling strategy, the
likelihood that a decision maker i will choose arm j at
round t is given by

L(B0,β1,ρ,φ,λ
Explore,λExploit,C,N,τ,X | data)

�ΣK
ki1�1Σ

K
ki2�1:::Σ

K
kiT�1{P(Ki1 � ki1)

ΠT
t�2P(Kit � kit |Ki(t−1) � ki(t−1)) ×ΠT

t�1P(Yijt � yijt |Kit � kit)
(7)

We use the forward-filtering technique (Murphy and
Bach 2012) and a hierarchical Bayesian approach
involving the Hamiltonian Monte Carlo (HMC) sam-
pling method to estimate the model parameters
(Gelman et al. 2013).15

5.7. Comparison with Previous Learning Models
Our modeling approach is distinct from previous
learning models that inspired it in several ways,
which we highlight below.

Our conceptualization of underlying and unob-
served sampling strategies is similar to the inertia,
sampling and weighing (I-SAW) model proposed by
Nevo and Erev (2012), where subjects exhibit three re-
sponse modes: exploration, exploitation, and inertia.
We differ in how we model subjects’ transitions be-
tween response modes and how they choose between
options under exploration and exploitation.

In the I-SAW model, choices in exploration and ex-
ploitation are rule based. Decision makers choose ran-
domly (uniform distribution) under exploration, and
choose with certainty the alternative with the highest
estimated subjective value in exploitation. We allow
decision makers to deviate even in exploitation from
the assumption of subjective value maximization, and
decision makers have varying degrees of sensitivity to
rewards. This sensitivity is imposed to be higher in
exploitation than in exploration, such that choices are
more random in exploration.

Choices under inertia are similarly conceptualized
in both models, and the probability of inertia de-
creases with the difference between expected and ob-
served outcomes, in line with Rescorla and Wagner
(1972). But in the I-SAW model, both positive and
negative outcomes relative to expectations can impact
the inertia state probability. This is because subjects
receive complete feedback about obtained and for-
gone payoffs. Our assumption is that only disappoint-
ing outcomes trigger changes in sampling strategies,
because feedback is limited to obtained outcomes.
Positive outcomes relative to expectations confirm
subjects’ beliefs about the profitability of the chosen
arm and are unlikely to trigger a change in behavior.

An important assumption that sets our model apart
form other reinforcement learning models, such as the
exploitative sampler, the contingent sampler (Biele
et al. 2009), or the I-SAWmodel, is that sampling strat-
egies follow a first order Markov decision process.
Thus, the probability of selecting sampling strategy k
at round t depends on the sampling strategy selected
at round t − 1.

We implement a myopic model. In our specification,
decision makers do not solve a dynamic program by
integrating the future value of information, or the
“exploration bonus” in their choices, as they would in
a forward-looking model. Evidence of forward-looking
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behavior was documented by Meyer and Shi (1995),
who found that a two-period look-ahead model fits ob-
served choice patterns in bandit problems better than
an optimal or a myopic model. Yang et al. (2015) and
Lin et al. (2015) show that including a forward-looking
component in dynamic discrete choice models im-
proves predictions of consumers’ preferences. Shahro-
khi Tehrani and Ching (2019) compare a myopic
benchmark to several forward-looking models to un-
derstand and predict consumer learning. They show
that a heuristic approach based on the value of perfect
information captures consumers’ behavior effectively
and is computationally efficient. Our assumption is
that decision makers intuitively understand that there
is value in exploring, and we account for this goal by
introducing the exploration state.

Gans et al. (2007) recommend using an exponential
smoothing model, nested in a logit specification with
a sensitivity parameter, to describe subjects’ behavior
in bandit problems. We propose a generalized version
of this model, increasing our ability to describe deci-
sion makers’ trade-offs between exploration and ex-
ploitation. In addition to accounting for how subjects
forget early rewards, we account for how subjects dis-
regard previous experience with an arm. The sensitiv-
ity parameter differs across exploration and exploita-
tion modes. Gans et al. (2007) acknowledge that
subjects spend very little time on choices as they learn
to play the game, but do not integrate this behavior in
their modeling approach. We account for this state de-
pendence by introducing the inertia state.

To summarize, our behavioral model, hereafter
labeled the EEI/EWA model (i.e., exploration–
exploitation–inertia model with experience-weighted
attractions), is a novel integration of several compo-
nents. First, Markov dynamics explain how subjects
choose between three sampling strategies, explora-
tion, exploitation, and inertia. Second, choices under
exploration and exploitation are governed by the
EWA model, whereas choices under inertia are driven
by the immediate past. Third, learning dynamics are
individual specific and informed by subjects’ psycho-
metric traits.

6. Quantifying Exploration/Exploitation
Trade-Offs and the Impact of
Psychometrics

We apply the behavioral model specified in the previ-
ous section to our experimental data from Study 1 to
describe subjects’ exploration/exploitation trade-offs.

We start by discussing subjects’ behavior as inferred
by our model. This highlights the complexity of the
model and the relationships between its various mov-
ing parts. Last, we compare our model to various

benchmarks to show how these moving parts are in-
formative of decision makers’ learning behavior.

6.1. Parameter Estimates
We first discuss decision makers’ transitions between
sampling strategies, followed by their belief-updating
process and choices conditional on sampling strate-
gies. We then describe the impact of psychometric
traits on learning. Table 2 reports all group-level
parameter estimates and their 95% highest density in-
tervals (HDIs).16

6.1.1. Transitions Between Sampling Strategies. We
capture dynamics between latent states by allowing
subjects to transition between sampling strategies
across rounds. Table 3 shows the posterior distribu-
tions of the transition propensities for the average
decision maker, computed based on the behavioral
parameters reported in Table 2.

To highlight the impact of experimental outcomes
on state transitions, we report in Table 3 two sets of
transition matrices, one following encouraging out-
comes, and one following disappointing outcomes.
The large diagonal elements of the transition matrices
suggest that subjects have a tendency to repeat the
previous sampling strategy.

If we compare the fourth and the seventh columns
of Table 3, we observe that subjects are less likely to
remain in inertia after a disappointing outcome
(qDInertia−Inertia � 0:477) than after an encouraging one
(qEInertia−Inertia � 0:751); disappointing results prompt de-
cision makers to reevaluate their strategy and

Table 2. Group-Level Estimates of Behavioral Parameters

Parameter Mean 95% HDI

Baseline transition parameters

β̄0,11 1.605 0.260 2.885
β̄0,12 0.409 −1.292 1.948
β̄0,21 −2.779 −4.097 −1.355
β̄0,22 1.224 −0.130 2.620
β̄0,31 −2.517 −4.362 −0.839
β̄0,32 −1.383 −2.971 0.231

Impact of disappointing outcomes

β1,11 1.373 −0.279 3.024
β1,12 0.479 −1.375 2.169
β1,21 0.012 −2.059 2.003
β1,22 2.688 1.060 4.109
β1,31 1.209 −0.662 2.461
β1,32 1.194 0.008 2.271

Belief-updating parameters

λExplore 0.082 0.058 0.105
λ̄
Exploit

0.187 0.095 0.335
φ̄ 0.221 0.141 0.310
ρ̄ 0.693 0.640 0.740

Notes. The table shows means and 95% HDIs of the (transformed) be-
havioral parameters. The inertia state 3 is used as the baseline.
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presumably invest more cognitive effort in the task.
Similarly, decision makers are more likely to enter an
inertia state after a good result (qEExploration−Inertia � 0:134,
qEExploitation−Inertia � 0:224) than after a disappointing one

(qDExploration−Inertia � 0:043, qDExploitation−Inertia � 0:019).
For every subject, at every round of the bandit ex-

periment, we compute the probabilities of using each
sampling strategy, and we plot the results in Figure 8.
There are substantial dynamics in sampling strategies.
Throughout the bandit experiment, as expected, the
likelihood of exploring decreases, whereas the likeli-
hoods of exploitation or inertia increase. After disap-
pointing outcomes, subjects are much less likely to
use an inertia strategy.

6.1.2. Choice Conditional on Sampling Strategies.
Figure 9 presents the predicted probability densities
of choosing each arm, when using a sampling strategy
of exploration, exploitation, or inertia. In exploration,
there is a large overlap between the probabilities of
choosing arms 1, 2, or 3. When in exploitation, subjects
are likely to choose the high-performing arm 1 and
highly unlikely to choose the lowest-performing arm
3. In an inertia state, subjects are likely to mechanical-
ly repeat their choice of arm 1, although at times they
may enter inertia while focusing on low-performing
arms 2 and 3.

Subjects’ choice of arm in exploitation is dependent
on the belief-updating process, governed by the EWA
model. With reference to Table 2, the average decay

Table 3. Means and 95% HDIs for the Posterior State Transitions, Following Disappointing or Encouraging Outcomes

State transitions

Following disappointing outcomes Following encouraging outcomes

From\to Exploration Exploitation Inertia Exploration Exploitation Inertia

Exploration 0.851 0.105 0.043 0.665 0.201 0.134
[0.478, 0.855] [0.0339, 0.142] [0.002, 0.488] [0.504, 0.691] [0.107, 0.271] [0.039, 0.389]

Exploitation 0.001 0.979 0.019 0.014 0.762 0.224
[0.001, 0.002] [0.717, 0.997] [0.001, 0.283] [0.009, 0.017] [0.464, 0.916] [0.067, 0.528]

Inertia 0.129 0.394 0.477 0.061 0.188 0.751
[0.006, 0.276] [0.049, 0.668] [0.054, 0.945] [0.012, 0.161] [0.048, 0.468] [0.371, 0.939]

Figure 8. Probabilities of Sampling Strategies Across Rounds, Following Disappointing or Encouraging Outcomes
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Notes. Subjects start in exploration and are more likely to stay in exploration than to move from exploration to exploitation or to inertia (see also
Table 3). This leads to more choices in exploration early on. Once in exploitation or inertia, subjects are unlikely to switch to exploration. We
therefore observe a larger probability to explore early on, and a lower probability to explore in later rounds of the bandit experiment. This
mirrors the exploration/exploitation trade-offs expected in bandit problems, and highlighted in the description of our experimental data (see
Section 3.2).
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parameter φ̄ (mean � 0.221, 95% HDI � [0.141, 0.310]) is
lower than ρ̄ (mean � 0.693, 95% HDI � [0.640, 0.740]),
implying that attractions grow more slowly than each
arm’s average payoffs. This suggests that attractions are
highly dependent on recent outcomes and on the extent
of experience with an arm, and explains subjects switch-
ing behavior between states.

6.1.3. Heterogeneity in Exploration/Exploitation Trade-
Offs. There is significant heterogeneity in state transi-
tion patterns across individuals, and in how subjects
update their beliefs about the profitability of the
three options.17

Figure 10 displays the subject-specific state probabili-
ties across rounds against subjects’ actual choices. The
model is able to capture subjects’ sampling strategies
efficiently. Subject 3 strikes a good balance between ex-
ploration, exploitation, and inertia. The subject explores
extensively in the first 20 rounds, then enters a state of
inertia. Subject 4 is estimated to mostly explore, focus-
ing too much on the least effective arm 3. Subject 46 en-
gages in exploration in the first few rounds, rapidly de-
cides to exploit arm 1, and then keeps sampling that
arm for the rest of the bandit experiment.

6.1.4. The impact of Psychometric Traits. Figure 11
plots the probability densities of the parameter esti-
mates showing the impact of psychometric traits on
learning behavior.18

More risk-seeking decision makers are less likely to
stay in exploration (δCRRA,β0i,11 � −1:094, 95% HDI
� [−1:987, − 0:274]).19 This is in line with our conjec-
ture in Section 2. Unsurprisingly, maximizers are
more sensitive to the attractions of options
(δMaximiz,λExploit

i
� 0:220, 95% HDI � [0:009,0:546]), as they

are trying to find the option leading to highest payoff,
rather than the option merely reaching a minimum
threshold of acceptability. Subjects who stated they
have used a more analytical decision-making (ADM)
style to solve the bandit problem tend to discount
more previous experience (δADM,ρi � −0:264, 95%
HDI � [−0:506, −0:023]). Because the average decay
rate of past experience is much higher than the aver-
age decay rate of past attractions, a heavier rate of de-
cay for past experience would bring its level of dis-
counting closer to that of past attractions.

A manager cannot alter the psychological profile of
a task leader, but can choose the leaders to be as-
signed to various tasks. Our analysis enables manag-
ers to link a task leader’s psychological profile to their
exploration/exploitation trade-offs and anticipate
their learning tendencies.20

6.2. Comparing Our Model to
Relevant Benchmarks

The main goal of this study is to understand and ex-
plain exploration/exploitation trade-offs. Given this,
we built a model informed by theory that captures the

Figure 9. Choice Probability Densities Conditional on Sampling Strategy
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Notes. Choices in exploration appear more random comparedwith choices in exploitation. The choice probabilities conditional on being in inertia
are one for the previously chosen arm and zero otherwise. Subjects are likely to repeat their choice of arm 1 when in inertia, although at times
they may focus on the low-performing arms 2 and 3. Therefore, the conditional choice probabilities of these arms have some density at one, but
much less so comparedwith the conditional probability of choosing arm 1.
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most relevant features of the data to thoroughly de-
scribe learning behavior. This can come at the expense
of predictive ability (Shmueli 2010). First, building
more complex models leads to a decrease in bias, but
can increase variance (Hastie et al. 2016). Second, fit-
ting many features of the model in-sample allows us
to thoroughly explain behavior, but it can hurt a mod-
el’s flexibility to predict new data out-of-sample. In
this section, we start by discussing in-sample fit meas-
ures to check whether our behavioral model is most
informative of the main features of the data when
compared with several relevant benchmarks. We
then assess the robustness of the proposed model in
terms of its predictive validity. We end by discus-
sing the ability of our proposed model and various
benchmarks to capture patterns of behavior out-of-
sample.

Our behavioral model has two main components:
(a) the hidden Markov model that assumes probabilis-
tic transitions between exploration, exploitation, and
inertia (EEI) and (b) a belief-updating component
(EWA). We first compare our full EEI/EWA model to
two nested models and highlight the necessity of both
model components. We call this set of nested models
the “main components” benchmarks:

• EEI model. This is a hidden Markov model that ex-
cludes the belief-updating component. Choices under

exploration are random (λExplore � 0), and choices under
exploitation are quasi-deterministic (λExploit � 1).
Choices in inertia remain as specified in Equation (5).
The expected payoffs are computed as arm-specific
running averages of rewards earned up to and includ-
ing the previous round (ρ � φ � 1).

• EWAmodel. The expected payoffs are computed us-
ing the EWA model, following Equation (3). Choice
probabilities include the sensitivity parameter λi. The
model is static; it does not include the hidden Markov
component.

The second set of benchmarks, labeled “key feature”
benchmarks, highlights the interest of having more
fine-grained adjustments to the model, nested within
the main components discussed above:

• statEEI/EWA. This is a stationary hidden Markov
model in which the individual-specific transition prob-
abilities between sampling strategies are constant
throughout the bandit experiment (β1kk′ are set to zero).

• EE/EWA. This is another nested model that ex-
cludes the inertia state; subjects only move between ex-
ploration and exploitation.

• EEI/EWA no PsychVars. This model excludes sub-
jects’ psychometric traits. In this model, Equation (6) in-
cludes only an intercept.

To assess the fit of our model against the above
benchmarks, we compute in-sample likelihood- and

Figure 10. Subject-Level Choice of Arm and State Membership Probabilities Across Rounds

Notes. We plot choice behavior (top) and the evolution of the state membership probabilities for three subjects (bottom), with various sampling
patterns. Arm 1 leads to the highest expected rewards, followed by arms 2 and 3.
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non-likelihood-based measures and discuss our mod-
el’s ability to recover key statistics of the data. We
then discuss the models’ ability to predict choices out-
of-sample using a temporal forecasting and a cross-
sectional validation approach.

6.2.1. In-Sample Fit. All models were estimated using
the same Bayesian framework and the same prior dis-
tributions as in the proposed EEI/EWA model. To as-
sess each model’s in-sample fit, we report in Table 4
the log-predictive density and the Watanabe–Akaike
information criterion (WAIC; Gelman et al. 2013) as
likelihood-based measures of fit. WAICs account for
model fit while correcting for model complexity and
adjust for the number of parameters. We also report
mean squared errors (MSEs) and hit rates as
likelihood-free measures of fit. For each individual at
each round and each iteration (after convergence) of
the HMC sampler, we first infer the underlying sam-
pling strategy a subject follows, drawn based on the
filtered state probabilities predicted by the model. We
then infer a choice of arm conditional on the realized
sampling strategy, using the predicted choice probabil-
ities conditional on state. We compute the squared er-
ror as the square of one minus the predicted probabili-
ty of the chosen arm. We average this measure across

rounds and across individuals to obtain an MSE.
Therefore, in our bandit experiment with multinomial
choices, MSE as the difference between predicted
probabilities and observed choices is a measure of the
confidence of each model in its predictions (Ansari
et al. 2012, Ascarza and Hardie 2013). The hit rate is
the average percentage of correctly predicted choices
across individuals and iterations of the HMC sampler.

In Table 4, with respect to the main components
benchmarks, in-sample fit measures support the dy-
namic EEI/EWA model that allows subjects to transi-
tion between sampling strategies over the static EWA
model. The EEI model, which excludes the belief-
updating component, fits the data best when looking
at likelihood-free criteria (hit rate at 74.3%, MSE at
0.171), but its WAIC is significantly worse compared
with all other models.

With respect to the fey features benchmarks, the
in-sample fit of the EEI/EWA model is superior to the
in-sample fit of the statEEI/EWA and EE/EWA mod-
els. This supports the conjecture that our dynamic
model that includes nonstationary transition probabil-
ities between sampling strategies and an inertia state
is best suited to explain learning behavior here.

The EEI/EWA model that excludes psychometric
variables fits the data similarly to the proposed model

Figure 11. Means and 95%HDIs of the Parameters Estimating the Impact of Psychometric Traits on the (Untransformed) Behav-
ioral Parameters
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in terms of likelihood-free criteria. The WAIC of the
model without psychometric traits is lower then
the WAIC of the proposed model. This is expected, as
the measure penalizes the proposed model for the ad-
ditional 36 parameters in the heterogeneity specifica-
tion, included to study the impact of psychometric
traits on exploration/exploitation trade-offs. Estimat-
ing the additional parameters can impact the variance
of the group-level parameters, which in turn negative-
ly affects WAICs (Gelman et al. 2014). It should also
be noted that EEI/EWAmodel without psychometrics
retains the ability to capture idiosyncratic behaviors at
the individual level (through the individual-level in-
tercepts in the Bayesian specification). Consequently,
the fact that it achieves similar in-sample fit comes at
no surprise. Stripped of psychometric variables, how-
ever, it cannot capture the underlying—and systemat-
ic—sources of such individual differences. Because
our main goal is to understand and explain learning
behavior, we retain the EEI/EWAmodel.

We present posterior predictive checks as addition-
al measures of in-sample fit to further describe how
various models recover key features of the data. A
key statistic in our bandit experiment is the subject-
level percentage of switches between arms, as a proxy
of the extent of learning subjects engage in. We test
how well the EEI/EWAmodel and the various bench-
marks recover this statistic. We compute the absolute
error as the absolute difference between the predicted
and observed percentages of switches between arms
for each subject and at each iteration of the HMC sam-
pler. Table 4 reports the mean absolute error (MAE) in
predicting the percentage switches across subjects. To
further understand how different learning behaviors
are recovered by the models, we split the sample into
deciles based on the observed percentage of switches
between arms. This will break down the performance
of models for subjects who engage in limited sam-
pling (5.4% switches on average for subjects in Decile
1) versus those who engage in extensive sampling of
the options (85.2% of switches on average for subjects
in Decile 10). Figure 12 plots per decile the predicted
versus observed mean percentage of switches.

First, the EEI/EWA model accommodates well the
behavior when there is little to a moderate of amount
of switching between arms. However, the model

underpredicts the amount of switching for subjects in
the last two deciles of the observed percentage of
switches, with subjects switching between arms in
more than 50% of the rounds. Looking at the perfor-
mance of the main components of the model, the
EWA model does not adjust sufficiently to subjects’
behavior, and tends to overpredict the amount of
switching for the first few deciles, and underpredicts
the percentage of switches for subjects who often
switch between arms. This is reflected in the large
mean absolute error, at 0.118, compared with 0.092 for
the EEI/EWA model. The EEI model predicts well the
percentage of switches between arms, and accommo-
dates particularly well the learning patterns in the last
two deciles, characterized by a lot of switching. Its
mean absolute error is lowest across models, at 0.078.
The key feature benchmark models perform similarly
to the proposed model. The EE/EWA model tends to
overpredict the amount of switching for subjects in
the first few deciles, but performs well for subjects
with a moderate to high amount of switching.

6.2.2. Out-of-Sample Predictive Performance. We vali-
date the predictive performance of the proposed
model and the various benchmarks using two distinct
out-of-sample approaches.

With temporal forecasting, we predict a subject’s be-
havior at rounds [t+ 1, T], given their history of be-
havior up to round t (e.g., Ansari et al. 2012, Ascarza
and Hardie 2013, Yang et al. 2015, Ascarza et al. 2018).
Assessing the ability of our model to predict a sub-
ject’s choices over time is particularly relevant for our
individual-level model, as the model conditions out-
of-sample predictions on individual-level parameters
and underlying state predictions at time t. We
calibrate our proposed model and the relevant bench-
marks using the first 80 rounds of data, and use sub-
jects’ choices in the last 20 rounds to measure predic-
tive performance.

One limitation of this classic out-of-sample ap-
proach is that, in our context, the last 20 rounds are
more likely to be geared toward exploitation and iner-
tia than toward exploration. Therefore, the models are
not compared on a fully representative sample of ex-
ploration/exploitation behaviors.

Table 4. Model Comparison—In-Sample Fit

Model Log-pred. density WAIC MSE Hit rates MAE

EEI/EWA (proposed model) −5,780 10,886 0.189 68.8% 0.092
EWA −5,807 11,483 0.220 63.2% 0.118
EEI −6,075 11,745 0.171 74.3% 0.078
stat EEI/EWA −5,805 10,940 0.190 68.5% 0.092
EE/EWA −5,726 11,209 0.200 67.5% 0.100
EEI/EWA no PsychVars −5,772 10,869 0.189 68.9% 0.091
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To assess the ability of our model to predict the full
range of sampling strategies, we also perform cross-
sectional validation. Implementing a 10-fold cross-
validation approach without replacement, we calibrate
a model on 90% of the data set (i.e., 80 or 81 subjects,
depending on the fold) and predict the full history of
behavior for the remaining 10% of subjects in the hold-
out data. In this exercise, we predict subjects’ behavior
from the very first to the very last round.

This latter, cross-sectional approach is not without
limitations. In particular, it cannot exploit individual-
level differences in behavior and tends to predict
average behaviors, remaining oblivious to some idio-
syncratic extreme behaviors observed in the data set.

Interpreting the results from both approaches
gives a clear picture of the overall out-of-sample
predictive abilities of the EEI/EWA model and its
variants.

We use out-of-sample performance measures simi-
lar to those used to analyze in-sample fit and posterior
predictive performance. Out-of-sample hit rates,
MAEs, and MSEs are computed similarly to their

in-sample counterparts using the holdout data for
temporal and cross-sectional validation.21 Comparing
the in-sample fit statistics and the two out-of-sample
prediction exercises will inform us on the importance
of understanding individual-level exploration/exploi-
tation trade-offs.

Overall, results in Table 5 and Figures 13 and 14
show that although no model uniformly outperforms
all others in terms of prediction performance out-of-
sample, different specifications are particularly suited
to accommodate certain types of behavior. To under-
stand further which specifications are best suited to
predict certain behaviors, we investigate how different
models fit the behavior of subjects as a function of the
extent of switching between arms, similar to the poste-
rior predictive analysis presented in Section 6.2.1.

Comparing the in-sample fit measures to the cross-
sectional out-of-sample performance measures, we
conclude that ignoring individual heterogeneity hurts
prediction performance, with hit rates decreasing by
about 10% across all models and measures, whereas
the error measures double out-of-sample. Figures 13

Figure 12. Posterior Predictive Check:Means and 95% Confidence Bounds of the Observed (Black Crossed Squares) vs. Pre-
dicted (Dots) Percentages of Switches Between Arms per Decile
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Notes. The left panel shows the proposedmodel versusmain component benchmarks. The right panel shows the proposedmodel versus key fea-
ture benchmarks. The individual-level percentage of switches between arms is a summary measure of the extent of learning a subject engages in.
Note that the 95% confidence bounds are very narrow and appear indistinguishable from themeans.

Table 5. Out-of-Sample Prediction Performance

Model

Temporal forecastinga Cross-sectional validationb

MSE Hit rates (%) MAE MSE Hit rates (%) MAE

EEI/EWA (proposed model) 0.176 70.7 0.183 0.293 57.4 0.184
EWA 0.164 69.8 0.192 0.281 53.7 0.226
EEI 0.254 66.0 0.222 0.351 55.4 0.190
stat EEI/EWA 0.174 71.1 0.176 0.300 57.6 0.176
EE/EWA 0.184 70.1 0.185 0.287 59.1 0.191
EEI/EWA no PsychVars 0.180 70.7 0.184 0.296 57.5 0.180

aThe temporal forecasting performancemeasures reported here are based on a calibration data set that includes 80 rounds.
bThe cross-sectional validation measures are based on a 10-fold cross-validation exercise, where subjects in the validation data set are sampled

without replacement.
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and 14 reveal a positive correlation between the pre-
dicted and the observed percentage of switches be-
tween arms across most models, showing that both the
proposed model and the various benchmarks are able
to accommodate different tendencies in switching be-
havior. This correlation is lowest in Figure 14, which is
not surprising, as we predict subjects’ full history of
choices out-of-sample, thus ignoring unobserved het-
erogeneity. “Typical” patterns of behavior where sub-
jects switch between arms in about 30%–50% of the
rounds have the lowest error in predicting behavior.
Differences between the observed and predicted per-
centages are highest at the extreme, where subjects
switch between arms in either less than 20% of the
rounds or in more than 60% of the rounds.

We now discuss the predictive performance of
our proposed model against the main components

benchmarks. With reference to Table 5, the proposed
model outperforms the EWA model in terms of hit
rates and MAEs, but performs worse in terms of MSEs.
Looking at Figure 13, the EWA model overpredicts the
amount of switching between arms for subjects who
consistently choose the same arm in the last 20 rounds
of the bandit experiment (first two deciles). Figure 14
shows that the EWA model is not sufficiently flexible
to accommodate different types of behavior and pre-
dicts a similar amount of switching between arms irre-
spective of subjects’ various patterns of behavior. The
EEI model underperforms out-of-sample on average
across all measures. It tends to overpredict the amount
of switching between arms in the last 20 rounds (see
Figure 13). Because of this, the model performs well
when predicting the behavior of those who tend to
switch frequently between arms even at the later stages

Figure 13. Temporal Out-of-Sample Prediction Performance: Means and 95% Confidence Bounds of the Observed (Black
Crossed Squares) vs. Predicted (Dots) Percentages of Switches Between Arms per Decile
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Notes. The left panel shows the proposedmodel versusmain component benchmarks. The right panel shows the proposedmodel versus key fea-
ture benchmarks. The 95% confidence bounds are very narrow and appear indistinguishable from the means.

Figure 14. Cross-Sectional Out-of-Sample Prediction Performance: Means and 95% Confidence Bounds of the Observed (Black
Crossed Squares) vs. Predicted (Dots) Percentages of Switches Between Arms per Decile
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of the bandit experiment. We observe a similar trend
for this model when predicting the full history of
choices out-of-sample (see Figure 14).

Last, we discuss the predictive performance of our
proposed model against the key feature benchmarks.
The EE/EWA model performs worse than the pro-
posed model when predicting the last 20 choices of sub-
jects. It performs better when predicting out-of-sample
the subjects’ full history of choices, with a higher hit
rate and lower MSE compared with the proposed mod-
el. However, the MAE of the EE/EWA model is higher
than the MAE of the proposed model. With reference
to Figure 14, the EE/EWA model predicts well the be-
havior of those who do not frequently switch between
arms, but severely underpredicts the extent of switch-
ing for those who do so. The model does not adapt well
when predicting out-of-sample the full history of
choices. Its predictions only weakly follow the increas-
ing trend in the observed percentage of switches.

The statEEI/EWA slightly outperforms the pro-
posed model on most out-of-sample measures, with
the one exception being its higher MSE, at 0.300 ver-
sus 0.293 for the proposed model, when predicting
choices cross-sectionally. Looking at Figure 14, the
statEEI/EWA model performs similarly to the pro-
posed model for “typical” behaviors characterized by
moderate switching, and performs slightly better
when predicting more extreme behaviors.

The psychometric traits appear to be a good predic-
tor of learning behavior when used for temporal fore-
casting. The hit rate and MAE of the proposed model
are similar to those of the model without psychomet-
rics, but the proposed model has a lower MSE. When
predicting the full history of choices out-of-sample,
the proposed model performs better in terms of MSE,
but worse in terms of MAE, compared with the model
without psychometrics (see Table 5). The model with-
out psychometric traits can accommodate “typical”
behaviors well for subjects who switch between arms
in 15 to 40% of the rounds (see Figure 14). However,
the model excluding psychometric traits performs
worse than the proposed model when predicting
more extreme behaviors. In other words, psychomet-
ric variables are not a necessary model component to
predict the “central tendencies” of the population, but
are valuable to detect and predict extreme behaviors.
In the analysis reported in Web Appendix Section
WA7, we show that more extreme behaviors
correspond to extreme financial (sub)performance;
therefore, the model with psychometric variables is
particularly relevant from a managerial point of view.

Overall, the proposed model performs well for
“typical” learning behaviors and is sufficiently flexible
to accommodate extreme behaviors. Psychometrics
are instrumental in allowing our model to adapt to
more extreme learning tendencies.

Taken together, the in-sample fit measures and the
out-of-sample predictions provide converging evi-
dence of the goodness-of-fit of our proposed model to
explain learning behavior, and is reasonably robust in
predicting various learning patterns. This lends sup-
port to our conjecture that a dynamic model account-
ing for subjects’ belief-updating process and allowing
for changes over time in subjects’ sampling strategies
and in their sensitivity to rewards is necessary to un-
derstand learning behavior.

7. Discussion
Managers routinely make decisions where they need
to strike a healthy balance between exploration and ex-
ploitation. Although the ability to search effectively is
one of the keys to successful decision making, to the
best of our knowledge, research has not yet examined
how managers solve such dynamic resource allocation
problems. In this paper, we formally examined deci-
sion makers’ trade-offs between exploration and
exploitation strategies, and linked their learning be-
havior to relevant psychological traits. To elicit
learning patterns, we used an experimental design in-
volving a three-armed bandit problem. The experi-
ment mirrored a business setting in which decision
makers learned about the profitability of three options,
while maximizing overall rewards over time. Decision
makers showed an intuitive sense for the basic princi-
ples of learning; they sampled the available options
multiple times, and eventually repeatedly used the
one believed to have the highest expected payoff.

We inferred the optimal sequential sampling strate-
gy in the experimental task using Gittins indices, a
canonical result in the stochastic sequential decision-
making literature. The behavior of most decision mak-
ers is shown to be far from optimal, with a tendency
to overexplore options, resulting in rates of switching
among options that significantly exceed those war-
ranted by an optimal policy. Such departures from op-
timality can result in payoffs being forfeited. Decision
makers leave money on the table, forgoing on average
over 30% of potential revenue.

To capture the dynamics in how decision makers
use different sampling strategies and to understand
better the underlying mechanisms at play, we used a
behavioral model based on a Markovian structure.
Decision makers transitioned between exploration
and exploitation behaviors, or simply reinforced their
previous choice of alternative. Factors such as out-
comes of previously sampled alternatives impact deci-
sion makers’ transitions between sampling strategies.
Outcomes that were poorer than expected had a large
impact on the choice of sampling strategy, as decision
makers tended to shy away from options that gave
such disappointing results. This impaired learning
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about the distribution of rewards for the disappoint-
ing options and contributed to suboptimal sampling.

Although decision makers’ trade-offs between ex-
ploration and exploitation are suboptimal, we demon-
strate that these trade-offs can be explained by looking
at their psychometric traits. Individual predictors in-
cluded risk preferences, decision-making style, and
tendencies to maximize or satisfice.

If managers’ learning patterns can be anticipated,
this would allow the right leader to be appointed for a
specific task. Should the situation demand for extend-
ed initial exploration of alternative policies, our find-
ings suggest that a more risk-averse decision maker
would be best suited to the task. In our experiment,
individuals employing a more analytical decision-
making style discounted previous rewards and expe-
rience of an option more similarly compared with less
analytical decision makers. Thus, analytical managers
would likely be more appropriate to handle tasks that
require constant updating of the expected rewards.
Our results also show that, in their search for the best
option, maximizers tended to be more sensitive to the
expected payoffs of each available option. Managers
whose tendency is to maximize are thus likely to be
suited to tackle tasks requiring a systematic approach.

We build on the literature on reinforcement learn-
ing. Our focus is on specifying a behavioral model
that allows us to understand individual-level explora-
tion/exploitation trade-offs. We generalize models
that assume underlying learning rules (Camerer and
Ho 1999, Nevo and Erev 2012, Erev and Haruvy
2015), and use a hidden Markov model to accommo-
date several sampling strategies (Ansari et al. 2012).
We also compare actual and optimal learning paths.
Whereas optimal sequential sampling theory does not
offer particularly suitable models to describe decision
makers’ learning strategies and choice behavior, a nor-
mative path offers a useful benchmark to formalize
systematic departures from optimal behavior. The
computation of the normative path used to bench-
mark behavior in previous literature is based on the
Gittins index specification, which assumes risk neu-
trality. An interesting avenue for further research
would be to study how the predictions of the optimal
path change when accounting for decision makers’
risk preferences. This can be achieved by using a
Whittle index to compute the optimal path, in line
with work by Shahrokhi Tehrani and Ching (2019)
and Lin et al. (2015). Failing to integrate risk preferen-
ces when computing the optimal path leads to an un-
derestimation of the extent of optimal exploration. As
a result, the gap between actual rewards and those
achieved under optimal sampling might be overesti-
mated. Further studies could strive to understand for
which types of decision makers, in terms of their risk
profiles, such issues are most pronounced.

We also contribute to the work on managerial deci-
sion making (Amaldoss et al. 2000, Ho et al. 2006, Gold-
farb and Yang 2009, Goldfarb and Xiao 2011, Goldfarb
et al. 2012 ). We relax assumptions of rational behavior,
in an attempt to understand more about managerial
learning, and to anticipate decision makers’ learning be-
havior by looking at their psychometric traits.

Our research offers a starting point for future work
aimed at providing recommendations to nudge man-
agers toward optimal learning. One area for such
recommendations lies in the design of the learning en-
vironment. In Web Appendix Section WA1, we inves-
tigate how changes in the learning environment can
impact decision makers’ exploration/exploitation
trade-offs and focus on a key feature: the decision time
frame. Study 2 allows for repeated opportunities to
learn. Study 3 manipulates the planning horizon of the
learning environment. We find that offering repeated
opportunities to learn and increasing the planning ho-
rizon are beneficial, bringing decision makers closer to
the optimal path. Although the additional studies are
a reasonable starting point, many other features of the
learning environment should be investigated, and our
work opens fruitful avenues for further research. As
an example, researchers could study the interaction be-
tween the learning patterns of individual managers
and the business culture in which they operate. How
would an overexplorer behave in an environment in
which the focus was on either experimentation and in-
novation or on efficiency and strategy refinement? Us-
ing an experimental design in which managers are en-
couraged to engage in either an exploration or an
exploitation strategy could provide insights into how
their performance is affected by a match or mismatch
between inherent and induced learning styles.

Further studies could attempt to devise toolboxes, de-
signed to compensate individual tendencies to either
over- or underexplore or to limit the extensive discount-
ing of previously acquired information.22 We have pro-
vided the basics for prescriptive analysis, by modeling
learning at the individual level, and showing how re-
searchers can systematically investigate changes in be-
havior across different experimental conditions. Our
analysis links learning tendencies to psychological
traits, which allows us to anticipate managers’ trade-
offs between exploration and exploitation.

We encourage future research to look more deeply at
managers’ learning tendencies and at how they impact
organizational behavior and profitability, a promising
area that has not yet been sufficiently examined.
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Endnotes
1 Further information is available on Google’s support website (see
https://cloud.google.com/blog/products/ai-machine-learning/
how-to-build-better-contextual-bandits-machine-learning-models; ac-
cessed onMarch 19, 2021).
2 See https://help.optimizely.com/Build_Campaigns_and_Experiments/
Stats_Accelerator (accessed on March 19, 2021).
3 We thank an anonymous reviewer for suggesting the additional
studies.
4 Bandit experiments with a smaller number of rounds and similar
average rewards per arms are likely to lead to random switching,
and to reduce the discriminatory power of any descriptive model
(Rapoport and Budescu 1997, Gans et al. 2007).
5 We use the classic power utility function u(x) � xr and elicit the
CRRA parameter r. Values of r below one imply risk-averse behav-
ior, and values above one imply risk-seeking behavior. See details
in Web Appendix Section WA2.
6 Given the specificity of the task, we expected to find a higher aver-
age score on the analytical subscale than on the intuitive subscale.
7 The average payment was calibrated to the hourly wage standards
imposed by the experimental laboratory.
8 Further details on the computation can be found in Web
Appendix Section WA3.
9 Subjects’ intertemporal preferences can differ significantly, and
optimal learning is dependent on the level of discounting of future
rewards. Although we cannot rule out definitively the impact of
time preferences on subjects’ choices, several features of the prob-
lem mitigate this issue. Because we are studying managerial learn-
ing, the weight on long-term versus short-term rewards is part of a
firm’s strategy, and is thus less impacted by individual preferences.
Our problem is a finite horizon problem, and subjects are paid in
proportion to the overall rewards accumulated during the task. It is
unlikely that subjects strongly discounted future rewards. More-
over, in our behavioral model and in the robustness analysis in
Web Appendix Section WA4, we account for the extent to which
subjects forget earlier outcomes and rely on recent outcomes when
making choices. This reveals interesting learning patterns, which
we discuss in Section 6 and in Web Appendix Section WA4.
10 Our study involves choices over a finite horizon. In order to im-
plement an “infinite” horizon in our experiment, we could use a
probabilistic end rule (Gans et al. 2007). The experimental task can
end at every round, with a fixed and known probability. The proba-
bility is used to discount expected rewards. Banks et al. (1997) note
some concerns with this procedure. First, subjects may not have a
good understanding of this probabilistic rule. Second, the small
chance that the experiment could last for several hours is not believ-
able. Also, in our context, managers cannot afford to test prospec-
tive actions over an infinite time horizon. We therefore used a
100-day finite horizon. Studies 2 and 3 in Web Appendix Section

WA1, speak to how exploration/exploitation trade-offs change over
the planning horizon and with repeated opportunities to learn.
11 In Web Appendix Section WA4, we present a robustness analysis
to this specification, where previous rewards are decayed before en-
tering the expected value computation, with several decay levels. A
specification that heavily decays previous rewards before entering
the expected value computation performs best in-sample, whereas
the out-of-sample prediction measures give a slight edge to the
specification presented here. We thank an anonymous reviewer for
suggesting this analysis.
12 The problem of how subjects form prior beliefs is fundamentally
different than understanding how decision makers learn. Here we
do not have sufficient experimental variation to identify subjects’
prior beliefs, nor the degrees of freedom to estimate them. This is
why we rely on the information we presented to subjects in the ex-
perimental instructions to set such beliefs and let future research in-
vestigate the process of forming prior beliefs.
13 The decay parameters are bounded between zero and one, and
we apply an inverse-logit transformation. Both sensitivity parame-
ters λExplore and λ

Exploit
i are bounded between zero and one. We ap-

ply an inverse logit and an exponential transformation to ensure the
proper ordering of the sensitivity parameters. Given the scale of the
attractions of options, a value of one corresponds to a quasi-
deterministic choice rule. Our estimates of the sensitivity parame-
ters are significantly below one across all models.
14 We use the following hyperpriors: vec(γ) ~N (0, 1), Ω ~ LKJ (2),
vec(τ) ~ Exponential(1). At the aggregate level, β1kk′ ~N (0, 1).
15 We conducted a simulation study to test whether our model pa-
rameters are empirically identified, and found that parameters are
well recovered for simulated data similar to our data set from Study
1. See Web Appendix Section WA6 for details.
16 The Gelman and Rubin (1992) statistic is below the acceptable
threshold of 1.1 for all model parameters, showing that the chains
have converged to the stationary distributions.
17 Figures WA6, WA7, and WA8 in Web Appendix Section WA7
show significant heterogeneity in the baseline propensities of sub-
jects to switch between states and in the parameters governing their
belief-updating process.
18 We report the means and 95% HDIs of these parameters in Web
Appendix Section WA7.
19 The higher the CRRA parameter, the more risk seeking a decision
maker is. Interestingly, risk-seeking decision makers seem more
likely to return to exploration from either exploitation or inertia, al-
though the parameters estimates did not reach statistical signifi-
cance (δCRRA,β0i,21 � 0:945, 95% HDI � [−0:264,2:128]; δCRRA,β0i,31 �
0:674, 95% HDI � [−0:462,1:856]).
20 In Web Appendix Section WA8, we present a post hoc explorato-
ry analysis highlighting the link between various psychological pro-
files, learning tendencies, and overall rewards.
21 Psyhcometrics are integrated in the calibration data set used for the
temporal out-of-sample predictions in line with the model specified in
Section 5.6, as we estimate individual-level parameters and use these
parameters for temporal forecasting. When predicting the full history
of choices out-of-sample, we use the full data set to first compute the
means of the psychometric traits, and then mean-center the psycho-
metrics of the subjects in the calibration and validation samples relative
to these means. Therefore, we keep the same mean psychometric traits
across all 10 folds used for cross-validation as a proxy for the stable
population-level traits. This reduces extraneous variation in parameter
estimates across the 10 folds and facilitates model comparison.
22 To facilitate further studies, the data set and codes used in this re-
search are available at https://github.com/alinafere/managerial_
exploration_exploitation_tradeoffs.

Ferecatu and De Bruyn: Managers’ Trade-Offs Between Exploration and Exploitation
Marketing Science, 2022, vol. 41, no. 1, pp. 139–165, © 2021 The Author(s) 163

https://cloud.google.com/blog/products/ai-machine-learning
http:///how-to-build-better-contextual-bandits-machine-learning-models
http:///how-to-build-better-contextual-bandits-machine-learning-models
https://help.optimizely.com/Build_Campaigns_and_Experiments/Stats_Accelerator
https://help.optimizely.com/Build_Campaigns_and_Experiments/Stats_Accelerator
https://github.com/alinafere/managerial_exploration_exploitation_tradeoffs
https://github.com/alinafere/managerial_exploration_exploitation_tradeoffs


References
Adler PS, Goldoftas B, Levine DI (1999) Flexibility vs. efficiency? A

case study of model changeovers in the Toyota production sys-
tem. Organ. Sci. 10(1):43–68.

Ahn WY, Vasilev G, Lee SH, Busemeyer JR, Kruschke JK, Bechara
A, Vassileva J (2014) Decision-making in stimulant and opiate
addicts in protracted abstinence: evidence from computational
modeling with pure users. Front. Psychol. 5:849.

Amaldoss W, Meyer RJ, Raju JS, Rapoport A (2000) Collaborating to
compete. Marketing Sci. 19(2):105–126.

Anderson CM (2001) Behavioral models of strategies in multi-
armed bandit problems. Unpublished PhD Thesis, California
Institute of Technology, Pasadena.

Ansari A, Montoya R, Netzer O (2012) Dynamic learning in behav-
ioral games: A hidden Markov mixture of experts approach.
Quant. Marketing Econom. 10(4):475–503.

Ascarza E, Hardie BGS (2013) A joint model of usage and churn in
contractual settings. Marketing Sci. 32(4):570–590.

Ascarza E, Netzer O, Hardie BGS (2018) Some customers would
rather leave without saying goodbye. Marketing Sci. 37(1):
54–77.

Baardman L, Fata E, Pani A, Perakis G (2019) Learning optimal on-
line advertising portfolios with periodic budgets. Preprint, sub-
mitted March 27, http://dx.doi.org/10.2139/ssrn.3346642.

Banks J, Olson M, Porter D (1997) An experimental analysis of the
bandit problem. Econom. Theory 10(1):55–77.

Benner MJ, Tushman M (2002) Process management and technologi-
cal innovation: A longitudinal study of the photography and
paint industries. Admin. Sci. Quart. 47(4):676–706.

Benner MJ, Tushman ML (2003) Exploitation, exploration, and pro-
cess management: The productivity dilemma revisited. Acad.
Management Rev. 28(2):238–256.

Betancourt MJ, Girolami M (2015) Hamiltonian Monte Carlo for hi-
erarchical models. Upadhyay SK, Singh U, Dey DK, Logana-
than A, eds. Current Trends in Bayesian Methodology with Applica-
tions (CRC Press, Boca Raton, FL), 79–100.

Biele G, Erev I, Ert E (2009) Learning, risk attitude and hot stoves in
restless bandit problems. J. Math. Psych. 53(3):155–167.

Busemeyer JR, Stout JC (2002) A contribution of cognitive decision
models to clinical assessment: Decomposing performance on
the Bechara gambling task. Psych. Assessment 14(3):253–262.

Camerer C, Ho TH (1999) Experience-weighted attraction learning
in normal form games. Econometrica 67(4):827–874.

Camerer CF, Ho TH, Chong JK (2004) A cognitive hierarchy model
of games. Quart. J. Econom. 119(3):861–898.

Cohen JD, McClure SM, Yu AJ (2007) Should I stay or should I go?
How the human brain manages the trade-off between exploita-
tion and exploration. Philos. Trans. Roy. Soc. London Ser. B
362(1481):933–942.

Crosetto P, Filippin A (2013) The” bomb” risk elicitation task. J. Risk
Uncertainty 47(1):31–65.

Cui TH, Mallucci P (2016) Fairness ideals in distribution channels. J.
Marketing Res. 53(6):969–987.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cor-
tical substrates for exploratory decisions in humans. Nature
441(7095):876–879.

Denrell J (2005) Why most people disapprove of me: Experience
sampling in impression formation. Psych. Rev. 112(4):951–978.

Denrell J (2007) Adaptive learning and risk taking. Psych. Rev.
114(1):177–187.

Denrell J, March JG (2001) Adaptation as information restriction:
The hot stove effect. Organ. Sci. 12(5):523–538.

Erev I, Haruvy E (2005) Generality, repetition, and the role of de-
scriptive learning models. J. Math. Psych. 49(5):357–371.

Erev I, Haruvy E (2015) Learning and the economics of small deci-
sions. The Handbook of Experimental Economics, vol. 2
(Princeton University Press, Princeton, NJ), 638–716.

Erev I, Roth AE (2014) Maximization, learning, and economic be-
havior. Proc. Natl. Acad. Sci. USA 111(3):10818–10825.

Erev I, Ert E, Yechiam E (2008) Loss aversion, diminishing sensitivi-
ty, and the effect of experience on repeated decisions. J. Behav.
Decision Making 21(5):575–597.

Gans N, Knox G, Croson R (2007) Simple models of discrete choice
and their performance in bandit experiments. Manufacturing
Serv. Oper. Management 9(4):383–408.

Gelman A, Rubin DB (1992) Inference from iterative simulation us-
ing multiple sequences. Statist. Sci. 7(4):457–472.

Gelman A, Hwang J, Vehtari A (2014) Understanding predictive in-
formation criteria for Bayesian models. Statist. Comput. 24(6):
997–1016.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB
(2013) Bayesian Data Analysis (CRC Press, Boca Raton, FL).

Gilboa I, Pazgal A (2001) Cumulative discrete choice. Marketing Lett.
12(2):119–130.

Gittins J, Glazebrook K, Weber R (2011) Multi-Armed Bandit Alloca-
tion Indices, 2nd ed. (Wiley, Hoboken, NJ).

Gittins JC, Jones DM (1979) A dynamic allocation index for the dis-
counted multiarmed bandit problem. Biometrika 66(3):561–565.

Goldfarb A, Xiao M (2011) Who thinks about the competition? Man-
agerial ability and strategic entry in US local telephone markets.
Amer. Econom. Rev. 101(7):3130–3161.

Goldfarb A, Yang B (2009) Are all managers created equal? J. Mar-
keting Res. 46(5):612–622.

Goldfarb A, Ho TH, Amaldoss W, Brown AL, Chen Y, Cui TH, Gal-
asso A, et al. (2012) Behavioral models of managerial decision-
making. Marketing Lett. 23(2):405–421.

Hastie T, Tibshirani R, Friedman J (2016) The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed.
(Springer, New York).

Hauser JR, Liberali GG, Urban GL (2014) Website morphing 2.0:
Switching costs, partial exposure, random exit, and when to
morph. Management Sci. 60(6):1594–1616.

Hauser JR, Urban GL, Liberali G, Braun M (2009) Website morph-
ing. Marketing Sci. 28(2):202–223.

Hill DN, Nassif H, Liu Y, Iyer A, Vishwanathan SVN (2017) An effi-
cient bandit algorithm for realtime multivariate optimization.
Matwin S, Yu S, Farooq F, eds. Proc. 23rd ACM SIGKDD Inter-
nat. Conf. Knowledge Discovery Data Mining (Association for
Computing Machinery, New York), 1813–1821.

Ho TH, Lim N, Camerer CF (2006) Modeling the psychology of con-
sumer and firm behavior with behavioral economics. J. Market-
ing Res. 43(3):307–331.

Horowitz A (1975) Experimental study of the two-armed bandit
problem. Unpublished PhD thesis, University of North Caroli-
na, Chapel Hill..

Lattimore T (2016) Regret analysis of the finite-horizon Gittins index
strategy for multi-armed bandits. Feldman V, Rakhlin A, Shamir O,
eds. Proc. Machine Learn. Res. Conf. Learn. Theory, vol. 49 (PMLR, Co-
lumbiaUniversity,NewYork), 1–32.

Liberali G, Ferecatu A (2019) Morphing consumer dynamics: Ban-
dits meet HMM. Preprint, submitted December 16, http://dx
.doi.org/10.2139/ssrn.3495518.

Lin S, Zhang J, Hauser JR (2015) Learning from experience, simply.
Marketing Sci. 34(1):1–19.

March JG (1991) Exploration and exploitation in organizational
learning. Organ. Sci. 2(1):71–87.

March JG (1996) Learning to be risk averse. Psych. Rev. 103(2):
309–319.

Meyer RJ, Shi Y (1995) Sequential choice under ambiguity: Intuitive
solutions to the armed-bandit problem. Management Sci. 41(5):
817–834.

Ferecatu and De Bruyn: Managers’ Trade-Offs Between Exploration and Exploitation
164 Marketing Science, 2022, vol. 41, no. 1, pp. 139–165, © 2021 The Author(s)

http://dx.doi.org/10.2139/ssrn.3346642
http://dx.doi.org/10.2139/ssrn.3495518
http://dx.doi.org/10.2139/ssrn.3495518


Misra K, Schwartz EM, Abernethy J (2019) Dynamic online pricing
with incomplete information using multiarmed bandit experi-
ments. Marketing Sci. 38(2):226–252.

Murphy KP, Bach F (2012) Machine Learning: A Probabilistic Per-
spective (MIT Press, Cambridge, MA).

NenkovGY,MorrinM,WardA, Schwartz B, Hulland J (2008) A short
form of the Maximization Scale: Factor structure, reliability and
validity studies. Judgment DecisionMaking 3(5):371–388.

Nevo I, Erev I (2012) On surprise, change, and the effect of recent
outcomes. Front. Psych.: Cognitive Sci. 3:24.

Niv Y, Edlund JA, Dayan P, O’Doherty JP (2012) Neural prediction
errors reveal a risk-Sensitive reinforcement-learning process in
the human brain. J. Neurosci. 32(2):551–562.

Novak TP, Hoffman DL (2009) The fit of thinking style and situa-
tion: New measures of situation-specific experiential and ratio-
nal cognition. J. Consumer Res. 36(1):56–72.

Posen HE, Levinthal DA (2011) Chasing a moving target: Exploita-
tion and exploration in dynamic environments. Management Sci.
58(3):587–601.

Rapoport A, Amaldoss W (2000) Mixed strategies and iterative elimina-
tion of strongly dominated strategies: an experimental investiga-
tion of states of knowledge. J. Econom. Behav. Organ. 42(4):483–521.

Rapoport A, Budescu DV (1997) Randomization in individual choice
behavior. Psych. Rev. 104(3):603–617.

Rescorla R, Wagner A (1972) A theory of Pavlovian conditioning:
The effectiveness of reinforcement and non-reinforcement.
Abraham HB, William FP, eds. Classical Conditioning: Current
Research and Theory (Appleton- Century-Crofts, New York),
64–99.

Roth AE, Erev I (1995) Learning in extensive-form games: Experi-
mental data and simple dynamic models in the intermediate
term. Games Econom. Behav. 8(1):164–212.

Roth AE, Erev I (1998) Predicting how people play games: Rein-
forcement learning in experimental games with unique, mixed
strategy equilibria. Amer. Econom. Rev. 88(4):848–881.

Sarin R, Vahid F (1999) Payoff Assessments without probabilities: A
simple dynamic model of choice. Games Econom. Behav. 28(2):
294–309.

Schwartz B, Ward A, Monterosso J, Lyubomirsky S, White K, Leh-
man DR (2002) Maximizing vs. satisficing: Happiness is a mat-
ter of choice. J. Personality Soc. Psych. 83(5):1178–1197.

Schwartz EM, Bradlow ET, Fader PS (2017) Customer acquisition
via display advertising using multi-armed bandit experiments.
Marketing Sci. 36(4):500–522.

Scott SL (2010) A modern Bayesian look at the multi-armed bandit.
Appl. Stochastic Models Bus. Indust. 26(6):639–658.

Shahrokhi Tehrani S, Ching AT (2019) A heuristic approach to ex-
plore: The value of perfect information. Preprint, submitted
May 21, http://dx.doi.org/10.2139/ssrn.3386737.

Shmueli G (2010) To explain or to predict? Statist. Sci. 25(3):289–310.
Simon HA (1959) Theories of decision-making in economics and be-

havioral science. Amer. Econom. Rev. 49(3):253–283.
Steyvers M, Lee MD, Wagenmakers EJ (2009) A Bayesian analysis

of human decision-making on bandit problems. J. Math. Psych.
53(3):168–179.

Toplak ME, West RF, Stanovich KE (2011) The cognitive reflection
test as a predictor of performance on heuristics-and-biases
tasks. Memory Cognition. 39(7):1275–1289.

Tushman ML, O’Reilly CA (1996) Ambidextrous organizations:
Managing evolutionary and revolutionary change. California
Management Rev. 38(4):8–29.

Tversky A, Kahneman D (1992) Advances in prospect theory: Cu-
mulative representation of uncertainty. J. Risk Uncertainty 5(4):
297–323.

Urban GL, Liberali GG, MacDonald E, Bordley R, Hauser JR (2014)
Morphing banner advertising. Marketing Sci. 33(1):27–46.

Whittle P (1988) Restless bandits: Activity allocation in a changing
world. J. Appl. Probab. 25:287–298.

Yang LC, Toubia O, De Jong MG (2015) A bounded rationality
model of information search and choice in preference measure-
ment. J. Marketing Res. 52(2):166–183.

Ferecatu and De Bruyn: Managers’ Trade-Offs Between Exploration and Exploitation
Marketing Science, 2022, vol. 41, no. 1, pp. 139–165, © 2021 The Author(s) 165

http://dx.doi.org/10.2139/ssrn.3386737

	s1
	s2
	s2A
	s2B
	s2B1
	s2B2
	s2B3
	s2C
	s3
	s3A
	s3B
	s4
	s4A
	s4B
	s4B1
	s4B2
	s5
	s5A
	TF1
	s5B
	s5C
	s5D
	s5E
	s5E1
	s5E2
	s5E3
	s5F
	s5G
	s6
	s6A
	s6A1
	TF2
	s6A2
	s6A3
	s6A4
	s6B
	s6B5
	s6B6
	TF3
	TF4
	s7

