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Abstract The authors explore situations where consumers supplement their judg-
ments with a measurement of uncertainty about their own preferences, either
implicitly or explicitly, and develop two sets of hierarchical Bayesian conjoint
models incorporating such measurements. The first set of models uses the relative
location of a rating to determine the importance or weight given to the rating, in a
regression setting. The second set uses interval judgment as a dependent variable in a
regression setting. After specifying the models, the authors perform a theoretical
comparison with a basic Bayesian regression model. They show that, under different
conditions, the proposed models will yield more precise individual-level partworth
estimates. Two simulated data examples and data from a conjoint study are used to
illustrate the gains that could be obtained from modeling uncertainty. In the
empirical application, the authors show that model fit improves when ratings for
items that respondents do not like are given more weight compared to ratings for
items that they do like.
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Conjoint analysis is probably the most widely used marketing research method to
measure consumer trade-offs between multiattribute products and services. (An
extensive review of the method is provided by Green et al. 2001.) No matter how
data is collected (ratings, rankings, or choice), conjoint analysis assumes that
consumers are capable of assessing and expressing their preferences. In addition we
assume that it is possible for consumers to have different degrees of uncertainty
about their preference statements. In this paper we explore whether more precise
utility estimates can be made by including uncertainty in a hierarchical Bayesian
model. The introduction of hierarchical Bayesian models by Allenby et al. (1995)
and Lenk et al. (1996) demonstrated the value of Bayesian models with respect to
conjoint problems. We follow in the spirit of their approach and propose a Bayesian
approach, which can incorporate uncertainty in both measurements and utilities into
the analysis.

1 Basic and proposed Bayesian models

When consumers are asked to give a preference judgment for a multiattribute object,
the traditional approach for inferring their utility for each component is to use a
regression model and call the estimated slope parameters the partworth utilities for
each associated feature. Stated formally, let

yip ¼ βT
i xip þ ~"ip; ð1Þ

where yip represents the stated preference for the pth (p=1,..., ni) object seen by the
ith (i=1,..., nT) consumer for which the attributes of the object are given by xip, βi is
the vector of partworth utilities or the utility associated with each attribute, and ~"ip is
an error term that reflects the uncertainty that the ith consumer has regarding his or
her understanding and ability to state his or her preference for the pth object
accurately.

In our basic hierarchical Bayesian model specification, we assume that

βi ¼d N β;L
� �

and e"ip ¼d N 0; eσ 2
i

� �
;1 ð2Þ

1where =d means equal in density and N represents a normal density. Then, unless
stated otherwise, we assume conjugate prior densities with appropriate prespecified
hyperparameters for b, Λ, and ~σ2

i , or

β ¼d N β;L
� �

;L�1 ¼d W nLp;PL
� �

; and eσ2
i ¼d IG shape; scaleð Þ; ð3Þ

where W denotes the Wishart distribution and IG represents an inverse Gamma
density. We use vague priors and, in the case of b; we set b ¼ 0 to simplify the

1We make the assumption that essentially all of the relevant probability mass for each yip is within a fixed
interval (e.g., between 1 and 100). This assumption also holds for the scores given by the two different
interval models. Clearly, there may be settings in which this assumption is not valid; in these cases, it is
fairly straightforward to replace the normal density for the error term with a truncated normal density. The
resulting model requires more sophisticated sampling strategies for the Markov chain Monte Carlo
(MCMC) algorithms. One sampling strategy that would work well for relaxing this error assumption is the
slice sampler, which we discuss in the Appendix.

Market Lett



notation. This choice is not restrictive because the corresponding variances of b are
assumed to be large. The basic hierarchical Bayesian formulation (Eqs. 1, 2, and 3)
provides a framework for modeling heterogeneity in the partworths (for a detailed
discussion, see Lenk et al. 1996).

1.1 Parabolic weighted regression models

In this paper we assume that the consumers’ preference judgments are supplemented
with a measurement of uncertainty. Our first approach is to use a weighted
regression model, where the weight attached is a function of the corresponding
uncertainty measurement, or

yip ¼ bTi xip þ wip"ip; ð4Þ
where wip modifies the ith consumer’s uncertainty about his or her stated preference
for the pth object. Note that a smaller weight implies less error for the corresponding
judgment. The weighted regression model allows judgments associated with a low
level of uncertainty to be more “informative” than judgments associated with a high
level of uncertainty.2 Weighted regression models have been used in the statistical
literature to allow for the different variances for each observation (e.g., Draper and
Smith 1981). If a weight is available, we analyze data from a weighted regression
model by rewriting Eq. 4 as follows:

~yip ¼ βT
i
~xip þ "ip; ð5Þ

where ~yip ¼ yip
�
wip and ~xip ¼ 1

�
wip

� �
xip.

We model the weight for each object as a function of a basic uncertainty
measurement (denoted by δip). Three commonly used uncertainty measurements in
the literature are: (1) a confidence measurement accompanying a single preference
judgment (e.g., Laroche et al. 1996), (2) a response latency measurement (e.g.,
Bassili and Fletcher 1991), and (3) the location of a single preference judgment (e.g.,
Raden 1985). For the confidence measurement approach, consumers report their
preference judgment yip and a confidence score cip, which becomes the basic
measurement of uncertainty, or δip=cip. For the response latency approach, the length
of time between when an object is presented for judgment and when it is judged, Tip,
is used as the basic measurement of uncertainty, or δip=Tip. Note that it may be
appropriate to use a ratio of actual response time to average response time, instead of
the response time, to adjust for any systematic trends in the response time data
(Haaijer et al. 2000). For the location approach, the location of a single preference
judgment with respect to the range of all judgments made by the consumer is used as
the basic measurement of uncertainty, or dip ¼ yip�‘i

ui�‘i
, where ui ¼ max

p
yip
� �

and
‘i ¼ min

p
yip
� �

. (Note, similar to a data dependent prior, we use the actual

2One limitation of our modeling approaches is that the models cannot distinguish between uncertainty in
the judgment scores and uncertainty in the utilities; stated differently, the covariance matrix of βi does not
depend on the uncertainty measurements. Extending the models so that Λ is a function of uncertainty
could distinguish between uncertainty in preference statements and uncertainty about the utility vector,
which represents a fruitful area for further research.
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observations to compute the basic measurement of uncertainty trying to obtain more
precise parameter estimates.)

For the confidence score, we anticipate that higher values will represent a
judgment where a consumer is more certain and for which the error variance should
be small. For the response latency measurement, we anticipate that lower values
represent a judgment where the consumer is more certain and the variance should be
small. A parabolic weight function, w(δ), of the respective basic measurement of
uncertainty can accommodate all these weighting schemes, and we assume that the
weight used in the weighted regression is given by

wip ¼ max wi δip
� �

; 0
� �

and wi δip
� � ¼ a0i þ a1iδip þ a2iδ

2
ip; ð6Þ

where a0i=1 to ensure that the model is likelihood identified and

aji ¼d N aj; v
2
j

� �
; for j ¼ 1; 2; ð7Þ

We also assume conjugate prior densities for aj and u2j with the appropriate
prespecified hyperparameters, or

aj ¼d N aj; C
2
j

� �
; υ2j ¼d IG shapej; scalej

� �
: ð8Þ

Again, we set aj ¼ 0 to simplify the notation, which is possible because we use
vague priors. Note that if we set u2j ¼ 0, for j=1,2 and t2i ¼ 0, for all i, then wip=
wi(δip)=1, and the model simplifies to the basic hierarchical Bayesian model. The
full conditional distributions for this model are given in a Technical Appendix,
which is available upon request from the authors.

1.2 Interval models

Classical ratings based conjoint models use point estimates of judgments, e.g., scores
on a 1–100 scale. An alternative method of uncertainty measurement is asking
consumers for an interval on a scale, where the range of the interval represents their
uncertainty (the larger the range, the larger the uncertainty). When interval
judgments are available, we develop corresponding Bayesian models for those data.
We present two interval models, one for upper and lower interval judgments
y‘ip; yuip
� �

and one for symmetric, midpoint interval judgments y‘ip; ymip; yuip
� �

,
where yuip � ymip ¼ ymip � y‘ip. These intervals can be viewed as imprecise
statements of a pair of quantiles from the distribution of a consumer’s true
preference. Exactly which quantiles a consumer states depends on how he or she has
internalized the idea that he or she is “very certain” that the interval contains the true
preference. (In this modeling approach, we do not claim to be able to nor do we need
to be able to make inferences about the quantiles used by a consumer.)

For upper and lower judgments y‘ip; yuip
� �

we assume the following likelihood:

yuip ¼ βT
i xip þ αi þ ξuip

y‘ip ¼ βT
i xip � αi þ ξ‘ip;

ð9Þ

where ξip ¼
ξuip
ξ‘ip

	 

¼d N 0; Sið Þ, Si is a 2×2 covariance matrix, and αi represents
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the preference uncertainty. Furthermore, the following prior distributions are
considered:

S�1
i ¼d W npr;P

� �
; αi ¼d N α; τ2α

� �
I αi > 0f g;

α ¼d N 0; τ 2α
� �

; τ2α ¼d IG Shapeτ2α ; Scaleτ2α

� �
:

ð10Þ

For midpoint interval data y‘ip; ymip
� �

, we assume the following likelihood:

ymip ¼ βT
i xip þ ξmip

y‘ip ¼ βT
i xip � αi þ ξ‘ip;

ð11Þ

where ξip ¼
ξmip
ξ‘ip

	 

¼d N 0; Sið Þ. The same prior distributions as described for

upper and lower interval model are assumed. To the best of our knowledge, this is
the first time that this class of models has appeared in the literature. The
corresponding full conditional distributions are given in a Technical Appendix,
which is available upon request from the authors.

1.3 The test–retest model

Another strategy to understand a consumer’s level of uncertainty with regard to
preference for an object is to have each consumer provide multiple judgments about
each object. Although this statistical model has been widely studied in the literature—
for example, the test–retest approach has been proposed for conjoint reliability studies
(e.g., Bateson et al. 1987; Green and Srinivasan 1978)—we include it in this section
for comparison.

The repeated observation model is given as follows:

yipt ¼ uip þ xipt and uip ¼ bTi xip þ "ip; ð12Þ

where xipt ¼d N 0; s2i
� �

, "ip ¼d N 0; s2
i

� �
, and the errors are independent. Using

conjugate priors for the parameters in Eq. 12, we can derive the full conditional
densities for the model parameters, which are given in the Technical Appendix.

2 Theoretical comparison of models

Several observations of interest can be made about the models proposed in the
previous section. For example, a careful review of the full conditional density of βi
can demonstrate the relationship between each of the proposed models and the basic
hierarchical Bayesian regression model and thus may help determine when each of
these competing models will, in theory at least, perform better. For the purposes of
this discussion, we first state the full-conditional means to allow the reader to
contrast the differences in how the uncertainty impacts these means and then in the
Technical Appendix, which is available from the authors upon request, we view
performance in terms of the full conditional precision (inverse of the variance–
covariance matrix) of βi.
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The full conditional density for βi of the basic hierarchical Bayesian model is
given by,

bij� ¼d N B�1
i bi;B

�1
i

� �
; ð13Þ

where Bi ¼ 1
~σ 2
i

P
p

xipxTip

� �
þ L�1, and bi ¼ 1

~σ 2
i

P
p
xipyip þ L�1β. Thus the full

conditional mean is

B�1
i bi ¼ A�1

i

X
p

yipxip

 !
þ B�1

i Λ�1b; ð14Þ

where Ai ¼
P
p

xipxTip

� �
þ ~σ2

i 0
�1. For the upper and lower interval model, the full

conditional mean is (cf. Equation (A12) from the Technical Appendix)

B�1
i bi ¼ A�1

ui

P
p

s2
‘i

s2Ti
yuip � αi

� �þ s2ui
s2Ti

y‘ip þ αi

� �� 2ρs‘isui
s2Ti

	
yuip�αið Þþ y‘ipþαið Þ

2


	 

xip

 !

þ B�1
i Λ�1β

ð15Þ
and for the midpoint interval model, it is

B�1
i bi ¼ A�1

mi

X
p

s2‘i
s2Tmi

ymip þ s2mi
s2Tmi

y‘ip þ ai

� ��2rismisui
s2Tmi

	
ymip þ y‘ip þ ai

� �
2


	 

xip

 !

þ B�1
i Λ�1b;

ð16Þ
where Aui ¼

P
p

xipxTip

� �
þ 1

1�ρ2ið Þ
1
s2ui
þ 1

s2
‘i
� 2ρi

s‘isui

� �	 
�1

Λ�1; s2Ti ¼ s2ui þ s2‘i � 2ρis‘isui, and

Ami and s2Tmi are obtained by replacing s2ui with s2mi in Aui and s2Ti, respectively.

By comparing Eqs. 15 and 16 with Eq. 14, we find that the observed interval
values combine in a natural way that offers a type of estimate of the central
preference judgment, or that yip is replaced by

s2‘i
s2Ti

yuip � ai

� �þ s2ui
s2Ti

y‘ip þ ai

� �� 2ris‘isui
s2Ti

	
yuip � ai

� �þ y‘ip þ ai

� �
2



ð17Þ

for the upper and lower interval model and by

s2‘i
s2Tmi

ymip þ s2mi
s2Tmi

y‘ip þ ai

� �� 2rismisui
s2Tmi

	
ymip þ y‘ip þ ai

� �
2



ð18Þ

for the midpoint interval model. These estimates of the central judgment are
calibrated in terms of the relative size of the variance for each part of the interval.
For example, when the upper limit is more uncertain than the lower limit, or s2ui > s2li,
( yuip−αi) will have less of an impact compared with y‘ip þ ai

� �
. A similar statement

can be made for the midpoint interval model.
For the test–retest model, which can be rewritten as

yipt ¼ bTi xip þ "ip þ xipt; ð19Þ
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the full conditional density of βi is:

bij� ¼d N B�1
i bi;B

�1
i

� �
: ð20Þ

where Bi ¼ ni0
s2i þσ2i ni0

� �P
p

xipxTip

� �
þ 0�1, bi ¼ 1

s2i þσ2i ni0

� �P
p;t

yiptxip
� �þ 0�1β and nio

is the assumed common value of nip. Thus yip is replaced by
P
t
yipt
�
ni0 here.

The full conditional densities, in Eqs. 13 to 20, can give insights regarding the
performance of an interval model, when the interval model is compared with a
regression model. For this comparison, we assume that researchers are interested in
understanding individual partworths βi, that a high precision (small variance) of βi is
better than a low precision, and that the variance terms for both models are equal or
sui ¼ s‘i ¼ smi ¼ ~σi ¼ si. Under these assumptions, it is easy to show that the
interval models will have higher precision than the basic regression model as long as
the correlation between the upper and lower interval ratings are less than 1; see the
Technical Appendix for details. In addition, the precision increases to infinity as the
correlation goes towards −1.

The intuition behind this result is straightforward; if the correlation is high, then
each pair of interval ratings will tend to be either above or below their average
values. This makes it harder to identify the center of the actual interval and hence the
actual partworths, as the observed pairs keep forming intervals that tend to be offset
from the true interval, even though the average center of these intervals is at the
center of the actual interval. Alternatively, if the correlation is negative, each pair of
interval ratings tends to be centered at the center of the true interval, although the
width of these intervals can vary dramatically; this happens because, when one
rating tends to be above its average value, the other one tends to be below its average
value.

This comparison can be extended to the test-retest regression model—the point at
which the interval model outperforms the test–retest regression model is dependent
on the specific assumptions of the variance parameters; again for a more detailed
discussion see the Technical Appendix.

3 Simulated data examples

We investigate the properties of the weighted regression model and the upper and
lower interval model, via two different simulation studies. In the first study we
generate weighted regression data, where we simulate a ‘measurement of
uncertainty’ or a δ and then use a parabolic map to convert δ into a standard
deviation which is then used to generate a synthetic response, based on individual
specific part-worth and random levels of covariates (see Fig. 1 for the average of the
parabolic map between δ and the standard deviation.) We have four conditions
driven by two factors, low and high information levels and low and high δ variation.
In the high information condition, we have 200 individuals and 25 repetitions per
individual, and in the low information condition, we have 50 individuals and 10
repetitions per individual. In the low δ variation condition most of the levels of δ are
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centered around 75 and in the high variation condition the levels of δ are distributed
between 0 and 100 (also, see Fig. 1 for a graphical summary of the low and high δ
variation conditions.) As a result the low δ variation condition results in fairly similar
variance, while the high δ variations condition results in a wide range of variances
for each individual. In the second study we generate upper and lower interval data
and here we have six conditions driven by two factors, low and high information
levels (which are the same as for the weighted regression study) and three different
levels of correlation (ρ=−0.7, 0 and 0.7) between the upper and lower ratings.

For both simulation studies, we contrasted the performance of the appropriate
model (i.e. weighted regression or interval model) with the standard hierarchical
regression model and we measured performance in terms of the ability to recover the
true part-worth parameter values. This was accomplished by finding the root mean
square error (RMSE) and mean absolute deviation (MAD) between the true
parameters and the posterior mean from the resulting Monte Carlo Markov chain
(MCMC) analysis. For the interval data, we analyzed the upper and lower ratings

Fig. 1 Summary of δ dispersion and a parabolic mapping between δ and standard deviation used to generate
the simulated data. The solid line summarizes the kernel density estimate of the simulated values of δ in the
“small variance” condition, which uses a narrow distribution of δ. (A Kernel Density Estimates can be
viewed as smoothed histograms obtained from the values of δ that were generated for the simulations.) The
dash-dot line summarizes the kernel density estimate of the simulated values of δ in the “large variance”
condition, which uses a wide, multi-modal distribution of δ. The dashed line gives the relationship between
the δ and their associated variances, with high scores having the highest variance or dispersion, hence being
less informative. The vertical axis on the left side of the graph gives the values for the two kernel density
estimates and the vertical axis on the right side of the graph gives the values that correspond to the
relationship between δ and the standard deviation

Market Lett



separately, each with their own standard regression analysis and then calculated the
RMSE and MAD using both sets of posterior means and true parameter values. The
results, as reported in Table 1, are as we expected. In general as the amount of
information decreases, the ability to recover the part-worth parameters becomes
worse. In addition, using the correct model results in an improved part-worth
estimate when compared to the standard hierarchical regression model. (Notice one
exception with weighted regression data: for the case of high information condition
and small δ variation, the performance is equivalent.) For the weighted regression
study, as δ becomes more dispersed (and hence the standard deviation becomes more
varied) the weighted regression model does even better than when δ is not as
dispersed. This is not surprising, as the standard regression model tends to
overweight observations with a large δ and underweight observations with a small
δ, resulting in an inappropriate weighting of random errors which leads to an
increase in estimation bias.

Not only is the weighted regression model better at recovering the true part worth
parameter values, it is better at estimating the level of uncertainty with respect to

Table 1 Results for several simulation studies which compare the ability to recover part-worth parameter
values: standard regression model versus competing models

Simulation studies Parameter
RMSE

Parameter
MAD

Weighted regression
data

High
information

Large δ variation Regression model 0.427 0.292
Weighted regression
model

0.384 0.255

Small δ variation Regression model 0.500 0.345
Weighted regression
model

0.501 0.345

Low
information

Large δ variation Regression model 0.655 0.474
Weighted regression
model

0.576 0.418

Small δ variation Regression model 0.645 0.465
Weighted regression
model

0.641 0.464

Interval data High
information

ρ=0.7 Regression model 0.258 0.154
Interval model 0.222 0.139

ρ=0 Regression model 0.267 0.157
Interval model 0.167 0.104

ρ=−0.7 Regression model 0.326 0.179
Interval model 0.098 0.059

Low
information

ρ=0.7 Regression model 0.444 0.267
Interval model 0.418 0.262

ρ=0 Regression model 0.488 0.282
Interval model 0.358 0.224

ρ=−0.7 Regression model 0.447 0.267
Interval model 0.202 0.126

Part-worth parameter recovery is measured by RMSE and MAD. Weighted regression model vs. standard
regression model on synthetic weighted regression data. Interval model vs. standard regression model on
synthetic interval data. High information is 200 individuals with 25 repetitions each and low information
is 50 individuals with 10 repetitions each
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each observation. This can be seen by calculating the z-score for each error, using
the parameter estimates and the weighted standard deviation. If the model can
correctly recover the varying standard deviations, then the resulting z-scores should
act as if they came from a standard normal distribution. By comparing the normal
probability plots for z-scores from the weighted regression analysis and the standard
regression analysis (cf. Fig. 2), it is clear that the standard regression analysis
systematically gets the wrong standard deviation for a large set of data points and
this systematic flaw is more pronounced as the variance of δ increases.

Perhaps the most striking feature in the recovery of the parameters is with respect
to the interval model simulation. For each of the different levels of correlation, the
standard regression model performs roughly the same based on the level of
information; however as we predicted in the theoretical comparison (see Section 2
and the Technical Appendix), as the correlation decreases, the ability of the interval
model to estimate the part-worth parameters increases. This decrease can be seen by
comparing the parameter RMSE for the regression model and interval model as
reported in Table 1.

Fig. 2 Normal probability plots of the standardized residuals. The residuals are standardized using the
estimated weights in the Weighted Regression models (a, b) and using a constant variance in the Standard
Regression models (c, d). These graphs are for the high information case of the weighted regression
simulation study. a Weighted Regression, High Variance. b Weighted Regression, Small Variance.
c Standard Regression, High Variance. d Standard Regression, Small Variance.
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4 Conjoint study

To gain some empirical understanding of the performance of the proposed models,
we collected data in an experimental setting. During the study, we randomly divided
respondents (undergraduate and graduate students from a large northeastern US
university) into several groups according to the way their preference was measured
(test–retest, upper–lower interval, and midpoint interval) and exposed each group to
one measurement method. We did not find any significant sociodemographic
differences among groups. In both studies, respondents rated a set of web pages that
represented the customized front page of a university news site. We administered the
survey in computer labs using a computer program specifically developed for this
experiment. In the final design, the web pages included five attributes: two with
three levels and three with two levels. For a description of the attributes and their
corresponding levels, see Table 2.

The test–retest group completed a self-explicated task and a dummy task (a
demographic survey) and then rated a set of 12 web pages. Next, they completed a
second dummy task (a university trivia quiz) and rated the same set of 12 web pages.
The upper–lower and midpoint groups performed a similar set of tasks except that
they used an appropriate interval tool to make their judgments and only rated the set
of 12 web pages once. A fractional factorial design was used to create the different
sets of web pages.

A total of 115, 128, and 130 subjects completed the study using the test–retest
method, the upper–lower interval method, and the midpoint interval method,
respectively. Each data set was analyzed using the MCMC algorithm and assuming
vague priors. Convergence diagnostics were calculated to ensure the models
exhibited reasonable mixing properties and converged in distribution. We assessed
model performance by calculating the log marginal probabilities, which were
estimated using a method proposed by Newton and Raftery (1994). The test–retest
data were analyzed using both a standard regression model and the weighted
regression model in which the weight is a function of the location. The interval data
sets were analyzed using their respective interval models.

Clearly, there are challenges with regard to comparing these competing models
across all the competing data sets. The easiest and most direct comparisons can be
made between the regression and weighted regression models using the test–retest

Table 2 Attributes used to construct the web pages

Attribute Levels

Weather forecast One week ahead general
forecast

One-day extensive
forecast

University news University sports General university news
General news US news (six headlines) World news (six headlines) Mixed (three headlines of US

and world news)
Business news General business news

(six headlines)
Stock market news
(six headlines)

Mixed (three headlines of
general and stock news)

Online coupon $2 $4
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data. Using the log marginal probability, this comparison shows that the weighted
regression model fits the data better than the standard regression model (Table 3).

Comparisons among all of the models is challenging given that we have three
different sets of data, two of which are bi-variate observations intended for analysis
using interval models. Each data sets has the same number of ratings or scalar data
points per participant (two sets of 12 ratings for the test-retest data and 12 pairs of
ratings for the interval data), but the size of the data sets (e.g. the number of
participants) are different for each data set. Given that each data set has the same
number of ratings per participant, one basis of comparison among the four analyses
is the log marginal probability per person; on this basis, the weighted regression has
the largest score at −80.63 (−9,272.91/115), followed by the midpoint analysis at
−81.77(−10,630.16/130) and finally the upper–lower analysis at −85.13
(−10,896.68/128). Although not a definitive basis of comparison, further empirical re-
search (e.g., a modified research design, more elaborate model comparison approaches)
could focus on developing a more satisfying comparison across the different models.

For the weighted regression analysis, as we show in Fig. 3, the aggregate weight
function (w dð Þ ¼ 1þ a1d þ a2d

2, with posterior means of a1 and a2) increases with
respect to the location percentage (δ) with a slightly positive rate of increase. The
location percentage is defined as (score−min)/(max−min), and is equal to 0 (resp. 1)
for the minimum (resp. maximum) score given by a respondent during a conjoint
task. This scaling is made necessary by the fact that respondents may use different
portions of the rating scale to express their preferences.

Model Data set Log marginal probability

Regression Test–retest −9,815.87
WR (location) Test–retest −9,272.91
Upper–lower Upper–lower −10,896.68
Midpoint Midpoint −10,630.16

Table 3 Log marginal proba-
bilities for regression and
weighted regression (WR)
models
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Fig. 3 Variance multiplier (par-
abolic function) of the location
score used as a weight in the
weighted regression model.
The lowest scores have a lower
variance, hence are more
predictive
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This increase suggests that less weight should be granted to judgments that have a
relatively high score; stated differently, subjects’ judgments about what they do not
like are more informative or perhaps more stable than their judgments about what
they do like. This result contrasts with the widely held assumption that the
uncertainty–location relationship follows an inverted-U shape. It also illustrates the
benefits of using parabolic weighting rather than relying on fold-over intensity to
gauge the weight of responses (Raden 1985). More broadly, the results of this study
suggest that incorporating measurements of uncertainty can lead to a better un-
derstanding of individual utility functions, but we readily acknowledge that these
results and models must be investigated in more detail in further research.

The aggregate parameter estimates for the four different modeling approaches are
relatively similar, as we show in Table 4.

The main difference between the regression and weighted regression models is in
the intercept estimates, which suggests that the baseline web page has a lower
overall utility than is estimated by the standard regression model. The interval
models give parameter estimates that differ from the regression estimates, which
may be because of differences among the groups of participants. Both the interval
models have high correlation values between the endpoint errors: the average
correlation from Si, according to the posterior means, is a relatively high 0.996 for
the upper–lower interval model and 0.970 for the midpoint interval model. In the
Technical Appendix, we argued that the farther these correlations are from 1, the
better the partworth estimates are (i.e., they have smaller variances). It appears that
this insight translates into better model fit in practice, in that the upper–lower
interval has the larger correlation but the midpoint interval model has the larger
average log marginal probability (or the better fit). This finding suggests that the
upper–lower interval judgments may result in more biased estimates than the
weighted regression and midpoint estimates (see the relevant estimates in Table 4).

5 Conclusions

We have proposed several new approaches to incorporate preference uncertainty into
a statistical model using a hierarchal Bayesian framework. The first set of proposed
models incorporates a parabolic function of uncertainty as a weight in a weighted

Table 4 Aggregate partworth (b) parameter estimates, posterior mean (Std)

Model Data set Intercept Weather University
sports

Coupon Mix
gen.
news

World
news

Mix
bus.
news

Gen
bus.
news

Regression Test–
retest

63.85
(1.49)

−5.67
(0.94)

−3.29
(1.12)

1.55
(0.40)

7.90
(0.88)

−5.12
(0.97)

7.29
(0.91)

2.99
(0.95)

Weighted
regression

Test–
retest

61.79
(1.17)

−5.82
(0.67)

−3.72
(0.47)

1.50
(0.22)

7.21
(0.63)

−5.51
(1.27)

7.21
(0.90)

2.87
(0.85)

Upper–lower
interval

Upper–
lower

57.71
(2.36)

−5.16
(1.08)

−0.64
(0.70)

1.12
(0.32)

4.61
(0.94)

−1.87
(0.70)

4.72
(0.75)

2.04
(0.67)

Midpoint
interval

Midpoint 59.59
(2.18)

−4.25
(1.02)

−1.45
(0.91)

1.68
(0.40)

3.38
(0.50)

−4.21
(0.67)

6.13
(1.00)

4.15
(0.98)
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regression model. The second set uses interval judgments as the dependent variables.
As a basis of comparison, we also consider a standard hierarchical Bayesian
regression model and a regression model in which subjects make repeated judgments
of the same item.

The contributions of this article include a presentation of the full model specifications
for the interval models and the parabolic, weighted regression model. To the best of our
knowledge, models such as the interval models have not been discussed in the literature
previously. In addition, the weighted regressionmodels that we present build on existing
models in the literature by introducing a shrinkage model that provides a means to
determine both the individual and the aggregate impact of a covariate on variance.

In addition to introducing a new class of models, we have conducted a theoretical
comparison of their performance. Using rather mild assumptions, we demonstrate
that models that include preference uncertainty measurements perform better than a
standard regression model that does not include such measurements. In addition, we
find that the correlation between stated intervals affects the variance of the utility
estimates. In particular, as the correlation tends toward −1, the variance of the utility
estimates moves toward 0. Finally, by introducing this class of models, we provide a
framework for investigating when and how different measurements of uncertainty
can lead to a better understanding of individual utilities. If individual subjects truly
have different levels of uncertainty about the judgments they make, these models
should help improve the accuracy of utility parameter estimates compared with the
standard hierarchical Bayesian regression model.

To investigate the performance of this class of models, we give a short report of a
simulation study and of an empirical study in which we find clear evidence that the
weighted regression model performs better than the standard regression model, as
well as some evidence that the interval measurement methods and models may
perform better than the standard measurement methods when used in conjunction
with the weighted regression model. In addition, the aggregate weight function
suggests that more weight should be given to judgments with lower scores compared
with judgments with higher scores, which indicates that judgments about what
subjects do not like may be more stable and informative than judgments about what
they do like. These empirical results offer some guidelines for future empirical
investigations. The models that we have introduced, along with their natural
extensions, should enable researchers to investigate and gain new insights into the
cognitive processes that underlie judgment formation and decision making.
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