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Abstract

In predictive modeling, firms often deal with high-dimensional data that span multiple channels, websites, demographics, purchase types, and
product categories. Traditional customer response models rely heavily on feature engineering, and their performance depends on the analyst's
domain knowledge and expertise to craft relevant predictors. As the complexity of data increases, however, traditional models grow exponentially
complicated. In this paper, we demonstrate that long-short term memory (LSTM) neural networks, which rely exclusively on raw data as input, can
predict customer behaviors with great accuracy. In our first application, a model outperforms standard benchmarks. In a second, more realistic
application, an LSTM model competes against 271 hand-crafted models that use a wide variety of features and modeling approaches. It beats 269
of them, most by a wide margin. LSTM neural networks are excellent candidates for modeling customer behavior using panel data in complex
environments (e.g., direct marketing, brand choices, clickstream data, churn prediction).
© 2020 Direct Marketing Educational Foundation, Inc. dba Marketing EDGE. All rights reserved.
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Introduction

In direct marketing, a firm targets a customer with a
marketing solicitation such as a catalog, a direct solicitation,
or a coupon, and the customer decides whether or not to
respond. Since soliciting a customer unlikely to respond is
unprofitable, and not soliciting a potentially profitable
customer leaves money on the table, the ability to predict
customers' responses has long been a crucial endeavor for
both practitioners and academics (e.g., Malthouse, 1999;
Roberts & Berger, 1999).

Response models in direct marketing predict customer
responses from past customer behavior and marketing activity.
These models often summarize past events using features such
as recency or frequency1 (e.g., Blattberg, Kim, & Neslin, 2008;
Malthouse, 1999; Van Diepen, Donkers, & Franses, 2009), and
the process of feature engineering has received significant
attention (Kuhn & Johnson, 2019; Zheng & Casari, 2018).

In machine learning, a feature refers to a variable that describes
some aspect of individual data objects (Dong & Liu, 2018).
Feature engineering has been used broadly to refer to multiple
aspects of feature creation, extraction, and transformation.
Essentially, it refers to the process of using domain knowledge
to create useful features that can be fed as predictors into a model.

However, feature engineering presents its own set of
challenges.

First, the same features might identically summarize widely
different behavior sequences (Blattberg et al., 2008; Fader,
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Hardie, & Lee, 2005). Consider the customer behavior pattern
depicted in Fig. 1. All four customers in the figure have the
same seniority (date of first purchase), recency (date of last
purchase), and frequency (number of purchases). However,
each of them has a visibly different transaction pattern. A
response model relying exclusively on seniority, recency, and
frequency would not be able to distinguish between customers
who have similar features but different behavioral sequences.

Second, in a complex environment where there are multiple
streams of data, such as in a data-rich environment where the
analyst has access to historical marketing activity of various
sorts (e.g., multiple types of solicitations sent through various
marketing channels) and diverse customer behaviors (e.g.,
purchase histories across various product categories and sales
channels) observed across different contexts (e.g., multiple
business units or websites, see Park & Fader, 2004), the vast
number and exponential complexity of inter-sequence and
inter-temporal interactions (e.g., sequences of marketing
actions, such as email–phone–catalog vs. catalog–email–
phone) will make the data analyst's job arduous.

Let us reflect for a moment on one of the simplest and most
commonly used features in direct marketing: recency, or the
time elapsed since the last customer's purchase. How should the
analyst hand-craft relevant recency features in an environment
spanning multiple product categories? Should she take into
account the last absolute recency, regardless of the product
category purchased (hence losing richness and granularity, and
potentially hurting the model's predictive power)? Should she
include in the model as many recency indicators as there are
product categories in the data set (hence creating excruciating
multicollinearity issues if customers buy from multiple product
categories at each purchase occasion)? Should she combine
individual and aggregate recency indicators? When crafting
relevant recency indicators, should the analyst consider
purchases in brick-and-mortar stores and purchases on the
firm's website jointly, or should she treat these indicators
separately?

When an analyst uses feature engineering to predict
behavior, the performance of the model will depend greatly
on the analyst's domain knowledge, and in particular, her
ability to translate that domain knowledge into relevant features
Fig. 1. Four customers with markedly different purchase patterns but identical featu
seniority (first purchase).
for the model. In complex environments, such as in the
presence of multiple channels or multiple product categories, it
can be quite challenging indeed for an analyst to capture all
useful inter-sequence and inter-temporal interactions.

In this paper, we explore whether Long-Short Term Memory
neural networks (LSTM), a special kind of Recurrent Neural
Networks (RNN), which rely on raw sequential data and do
away with feature engineering, can offer the promise of a
solution to this general class of modeling problems in
marketing.

In customer response models, the data are often in the form
of panel data, where the firm's actions (e.g., solicitations) and
customers' behavior (e.g., purchases) are observed repeatedly
over time and along multiple dimensions (e.g., multiple
channels or product categories).

Surprisingly, while RNN models are common in natural
language processing, their applications—let alone marketing
panel data—have been scarce, and even close to nonexistent. In
their seminal book, Goodfellow, Bengio, and Courville (2016)
cite applications of RNN in the domains of machine translation,
prediction of text sequences, handwriting recognition, and
speech recognition. Pointer (2019, p. 70) mentions in passing
that RNNs are particularly suited for “data that has a temporal
domain (e.g., text, speech, video, and time-series data),” but
dedicate the chapter to text analysis. Saleh (2018) dedicates an
entire section to the numerous applications of RNN (pp. 153–
157), but exclusively cites natural language processing, speech
recognition, machine translation, unidimensional time-series
forecasting, and image recognition. However, as we will
demonstrate, RNN models in general, and LSTM models in
particular, seem particularly suited for panel data analysis.

We organize the paper as follows. In the first section, we
introduce the LSTM model as a special class of recurrent neural
networks. Given the newness of the method to social scientists
in general, and to marketing analysts in particular, we dedicate
significant space to explain its inner working. While LSTM
models take raw behavioral data as input and therefore do not
rely on feature engineering or domain knowledge, our
experience taught us that some fine-tuning is required to
achieve optimal LSTM performance; in the second section, we
pay special attention to the proper calibration of an LSTM
res in terms of recency (last purchase), frequency (number of purchases), and
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model, including parameter and hyperparameter tuning, which
can be fully automated and do not require domain knowledge
either. In the third section, we demonstrate the superior
performance of the LSTM model in a relatively simple, direct
marketing setting with only donations (yes/no) and solicitations
(yes/no). We show that the LSTM model, relying on raw data,
achieves a better average fit and performance than the feature-
based, benchmark models. In the fourth section, we benchmark
a vanilla LSTM model in a much more complex environment
(e.g., multiple channels and donation types) against 271 hand-
crafted models developed by about as many human analysts.
The LSTM outperforms 269 of them. In the fifth section, we
discuss the marketing applications in which we expect LSTM
neural networks to prove valuable, and important technical
considerations in the fast-moving field of deep learning in the
sixth section. We conclude in the seventh section.

Model Description

Recurrent Neural Network (RNN)

In a traditional feedforward neural network, a vector x is
processed through propagation in a neural network and
produces an output vector y, as depicted in Fig. 2(A). Recurrent
neural network (RNN) is a kind of artificial neural network
(ANN) that is adapted to model sequential tasks. Rather than
relying exclusively on the vector x to make its predictions, an
RNN will also use part of the output of the previous iteration
(the hidden state) as input for the next prediction (see Fig. 2
(B)). By “unrolling” an RNN, as depicted in Fig. 2(C), it
becomes apparent that this neural network architecture is
particularly suited to model sequence data.

The sequence-based specialization allows the RNN to
process longer sequences than what would be practical by
other forms of neural network architectures (Goodfellow et al.,
2016). The RNN has the form of a chain of repeating modules,
each passing a message to its successor module (Olah, 2015)
Fig. 2. Classic feedforward neural network (A), recurrent neural network (B), and “un
sequence data (x1, x2, x3) to make sequence predictions (y1, y2, y3) while preserving
and is, therefore, ideal for modeling sequential predictive tasks
(Rumelhart, Hinton, & Williams, 1986). Each module in the
sequence is sometimes referred to as timesteps based on their
position in the sequence. The RNN processes a sequence of
input vectors (x1, x2, x3, …, xT), with each vector being input
into the RNN model at its corresponding timestep or position in
the sequence. The RNN has a multidimensional hidden state,
which summarizes task-relevant information from the entire
history and is updated at each timestep as well.

Becauseof their typical high-dimensionality, the hidden states of
RNN models are usually more potent than that of hidden markov
models (e.g., Netzer, Lattin, & Srinivasan, 2008), which are
commonly used in marketing to capture customer dynamics. The
HMMhasN discrete hidden states (whereN is typically small) and,
therefore, has only log2(N) bits of information available to capture
the sequence history (Brown & Hinton, 2001). On the other hand,
the RNNhas distributed hidden states, whichmeans that each input
generally results in changes across all the hidden units of the RNN
(Ming et al., 2017). RNNs combine a large number of distributed
hidden stateswith nonlinear dynamics to update these hidden states,
thereby allowing it to have a more substantial representational
capacity when compared with an HMM (Brown & Hinton, 2001;
Hinton, 2013).

The RNN follows the following equations:

ht ¼ tanh Whxxt þWhhht−1 þ bhð Þ ð1Þ
ŷt ¼ Wyht þ by ð2Þ
Where: Whh represents the recurrent weight matrix. Whx is the
input-to-hidden weight matrix. Wy is the hidden-to-output
weight matrix. bh, by represent the bias parameters.

Some researchers present Eq. (1) in the following manner to
simplify its notation:

ht ¼ tanh Wh xt; ht−1½ � þ bhð Þ ð3Þ
rolled” graphical representation of a recurrent neural network (C) where we use
information through the hidden states h1, h2, h3.
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The above equations show that every position in the
sequence has its corresponding input vector, hidden state, and
output vector. This architecture leads to the formation of a
recursive/recurrent function that makes the RNN share its
parameters across the different positions in the sequence,
thereby letting the model learn and generalize across timesteps.

The cross-entropy loss between the true yof the training data and
the predicted ŷ is used to create the cost function, in a step known as
forwardpropagation.Then, backpropagationuses information from
thecost function tocalculategradientswith respect to theparameters
used in the RNN. Since, in an RNN architecture, the network
modules are arranged sequentially, forward propagation involves
moving from left to right across timesteps. In contrast,
backpropagation involves moving from right to left (as if moving
backward in time). The backpropagation in the RNN is thus called
backpropagation-though-time (BPTT) (Goodfellow et al., 2016;
Rumelhart et al., 1986).

The gradients calculated by BPTT are used by a learning
algorithm such as gradient descent with momentum, RMSProp
(Tieleman & Hinton, 2012), or the Adam optimizer (Kingma &
Ba, 2014) to tune the parameters towards the minimum of the
cost function.

The learning mechanism of the recurrent neural network
thus involves: (1) the forward propagation step where the cross-
entropy loss is calculated; (2) the backpropagation step where
the gradient of the parameters with respect to the loss is
calculated; and finally, (3) the optimization algorithm, that
changes the parameters of the RNN based on the gradient.
The Strengths and Shortcomings of RNN

For natural language processing, an RNN would encode the
sentence “A black cat jumped on the table” as a sequence of
seven vectors (x1, x2, … x7), where each word would be
represented as a single non-zero value in a sparse vector2

(Goodfellow et al., 2016). For instance, if we train a model with
a vocabulary of 100,000 words, the first word “A” in the
sentence would be encoded as a sparse vector of 100,000
numerical values, all equal to 0, except the first (corresponding
to the word “A”), which would be equal to 1. The word “black”
would be encoded as a sparse vector of 100,000 zero's, except
the 12,853rd element (corresponding to the word “black”)
equal to 1, etc.

The RNN processes the entire sequence of available data
without having to summarize it into features. Since customer
transactions occur sequentially, they can be modeled as a
sequence prediction task using an RNN as well, where all firm
actions and customer responses are represented by elements in
a vector.

For instance, suppose a firm solicits customers either
through phone, mail, or email (three channels), and customers
may purchase across 17 product categories. All the analyst has
to do is to encode each observation period (e.g., a day, a week,
2 The dimensionality of the vector is often reduced through word embedding,
a technique used in natural language processing, and with little applicability to
panel data analysis. We skip this discussion in the interest of space.
a month) as a vector of size 20, where all the values are equal to
0, except when a solicitation is sent, or a purchase is observed.
If purchase seasonality is significant, e.g., if peaks in sales
occur around Christmas, the analyst can also encode the current
month using a one-hot vector of size 12, for a total vector
length of 32 raw inputs.

While an RNN can carry forward useful information from one
timestep to the next, however, it is much less effective at capturing
long-term dependencies (Bengio, Simard, & Frasconi, 1994;
Pascanu, Mikolov, & Bengio, 2013). This limitation turns out to
be a crucial problem in marketing analytics.

The effect of a direct mailing does not end after the
campaign is over, and the customer has made her decision to
respond or not. An advertising campaign or customer retention
program can impact customers' behaviors for several weeks,
even months. Customers tend to remember past events, at least
partially. Hence, the effects of marketing actions tend to carry-
over into numerous subsequent periods (Lilien, Rangaswamy,
& De Bruyn, 2013; Schweidel & Knox, 2013; Van Diepen et
al., 2009).

The LSTM neural network, which we introduce next, is a
kind of RNN that has been modified to effectively capture long-
term dependencies in the data (Gers, Schmidhuber, &
Cummins, 1999; Hochreiter & Schmidhuber, 1997).

The Long-Short Term Memory (LSTM)

In many real-world applications, such as in natural language
processing, machine translation, or customer modeling, it is
crucial to capture long-term dependencies in the data. However,
during BPTT, the gradient of the vanilla RNN, when
propagated over multiple steps, tends to explode or vanish,
leading to difficulties in capturing long-term dependencies
(Bengio et al., 1994; Pascanu et al., 2013).

The LSTM model is a kind of RNN designed explicitly to
capture long-term dependencies and resolve the vanishing/
exploding gradient problem (Gers et al., 1999; Hochreiter &
Schmidhuber, 1997). The LSTM network forms a chain of
repeating modules, like any RNN, but the modules, apart from
the external recurrent function of the RNN, possess an internal
recurrence (or self-loop), which lets the gradients flow for long
durations without exploding or vanishing.

An LSTM model is governed by the following equations3:

c˜bt≥ ¼ tanh Wc abt−1N; xbtN
� �þ bc

� � ð4Þ

τu ¼ σ Wu abt−1N; xbtN
� �þ bu

� � ð5Þ
τ f ¼ σ Wf abt−1N; xbtN
� �þ bf

� � ð6Þ

τo ¼ σ Wo abt−1N; xbtN
� �þ bo

� � ð7Þ
3 The sign * represents the Hadamard element-wise product.
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4 The term ‘feature’ here is used to refer to the dimension of the x-variables
that we input to the LSTM model at each timestep. These features are not based
on using domain knowledge to extract relevant predictors, but rather uses un-
summarized data.
cbt≥ ¼ τu � c˜btN þ τ f � cbt−1N ð8Þ

abt≥ ¼ τo � tanh cbtNð Þ ð9Þ

The LSTM, when compared with the vanilla RNN, apart from
the original hidden state (referred to as a<t> here), has an additional
hidden state c<t> (also referred to as the cell state) which specially
acts as amemory cell. InEq. (4), theweightmatrixWc represents the
combinationof input-to-hidden and the recurrentweightmatrices as
was shown in the RNN Eq. (3) withWh.

The LSTM has three gates: the update gate (“u”), the forget
gate (“f”), and the output gate (“o”). As shown in Eqs. (5)
through (7), these gates are opened or closed based on the
weight matrices (Wu, Wf, and Wo, respectively) of the
corresponding gates and a sigmoid function. The cell state
remembers relevant information from the past timestep through
the gating mechanism of the update and the forget gates. As
depicted in Eq. (8), the internal recurrence which calculates the
values of c<t> uses the update and the forget gates to calculate a
weighted average of the candidate c˜<t> (i.e., the possible new
value of c<t>) and c<t−1> from the last timestep.

For intuition, let us consider that the update gate has a value
close to 1, while the forget gate is close to 0. The candidate
c˜<t> becomes the new value for c<t>, and all prior information
is “forgotten.” On the other hand, when the update gate is close
to 0, and the forget gate is close to 1, the past value of c<t−1> is
carried forward as c<t>; the cell state is fully carried over,
unchanged, and without loss of information, to the next
timestep. Using this internal recurrence along with the gating
mechanism, the LSTM can selectively carry forward relevant
information across numerous timesteps.

Finally, at each timestep, the output gate controls how much
of the current cell state c<t> is to be revealed to the hidden state
a<t>. The hidden state and the hidden-to-output weight matrix,
along with the activation function (as shown in Eq. (10)),
produces the predicted output at that timestep. For our
transaction incidence model, since we are predicting customer
responses as binary outcomes, we use a sigmoid function σ:

ŷbt≥ ¼ σ Wy a
btN þ by

� � ð10Þ

It is worth noting that though our study focuses on LSTM
neural networks, there are other variants of the RNN as well such
as theGatedRecurrent Unit (GRU)which use internal recurrence
and gating mechanism along with the external recurrence of the
RNN (Cho et al., 2014; Chung, Gulcehre, Cho,&Bengio, 2014).
However, research seems to suggest that none of the existing
variants of the LSTM may significantly improve on the vanilla
LSTM neural network (Greff, Srivastava, Koutník, Steunebrink,
& Schmidhuber, 2016). For this paper, these results encouraged
us to consider the standard LSTM neural network instead of its
other variants. We note, however, that deep learning is a fast-
moving and rich research area, and other RNN variants may
prove more suitable in the future.
LSTM Model Calibration

Bias, Variance, and Model Capacity

As discussed in the LSTM model section, the parameters of
the LSTM module/cell are Wu, Wf, Wo, Wc, bu, bf, bo, and bc.
We use the parameters Wy and by to generate the predictions of
ŷ<t> from the hidden state of the LSTM. The dimension of the
LSTM weight matrices depends on the dimension of the hidden
state (referred to as hidden units) and the number of input
features in x.4

At each timestep, we submit relevant variables x, such as
marketing actions (e.g., solicitations), customer behavior (e.g.,
purchase occurrences), and seasonality indicators (e.g., month),
in the form of a vector of dummy variables. In our illustration,
the y variable is a vector of size one that indicates whether the
customer has purchased during the following period, although
the dependent variable can easily include multiple indicators.

In the first empirical illustration, we will predict the
likelihood an individual will donate to a charity over a specific
period based on past donation and solicitation histories. The
calibration and prediction setup for our LSTM is displayed in
Fig. 3.

The analyst sets the number of hidden units in the LSTM
exogenously. Settings that are used to control the learning of
the algorithm, but are not parameters tuned by the learning
algorithm itself, are referred to as hyperparameters (Kuhn &
Johnson, 2013). Apart from the number of hidden units, the
LSTM neural network has other hyperparameters such as the
learning rate, batch size (how many observations are submitted
to the LSTM per learning iteration), or the relative contribution
of norm penalties to the cost function (for regularization
purpose).

While training a model, the analyst aims at setting the
parameters and hyperparameters such that the model reaches
optimal capacity (Goodfellow et al., 2016) and therefore
maximizes the chances that the model will generalize well to
unseen data. Models with low capacity would underfit the
training set and hence have a high bias. However, models with
high capacity may overfit the training set and exhibit high
variance. Representational capacity is the ability of the model
to fit a wide range of functions. However, the effective capacity
of a model might be lower than its representational capacity
because of limitations and shortcomings, such as imperfect
optimization or suboptimal hyperparameters (Goodfellow et al.,
2016).

To increase the match of the model's effective capacity and
the complexity of the task at hand, the analyst needs to tune
both the parameters and the hyperparameters of the model.
Given how sensitive LSTM models are to hyperparameter
tuning, this area requires particular attention.



Fig. 3. LSTM network architecture for customer response prediction.
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Hyperparameter Tuning

To achieve the model's optimal capacity, we start with a
wide range of possible values for hyperparameters, each having
the potential to increase or decrease model capacity and modify
them in the hyperparameter tuning process.

In our application, the hyperparameters are:

1. The number of hidden units. Too few hidden units would
hinder the capacity of the model to identify complex yet
meaningful relationships in the data, though too many
hidden units would increase the chances of model
overfitting.

2. The norm penalty for the recurrent weights of the LSTM
model. It is recommended to use either L1 (linear) and/or L2
(quadratic) regularization,5 each adding a penalty to the cost
function based on the amplitude of the model parameters. A
too-small penalty might not act effectively against model
overfitting, while a too-large penalty would decrease model
capacity.

3. The learning rate (the step size) of the learning algorithm is
crucial for optimization purposes. When the learning rate is
too high, learning becomes unstable, and errors might
increase uncontrollably. When the learning rate is too low,
training becomes extremely slow and might get stuck in
regions of high error (Goodfellow et al., 2016). Although the
learning rate does not control the representational capacity
of the model, it may significantly hinder its effective
capacity. The step size of the learning algorithm is often
5 Dropout is another form of regularization which can be used against
overfitting, particularly in sequence networks (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014; Gal and Ghahramani 2016).
considered the most important hyperparameter of the LSTM
model (Greff et al., 2016).

4. The batch size, or the number of examples provided to the
algorithm at each learning iteration. Bengio (2012) mentions
that the mini-batch size is usually chosen to be between 1
and a few-hundreds. While batch size may impact the speed
of learning, in our experience, it does not seem to affect
model performance much.

We, therefore, use hyperparameter tuning to set: (1) the
number of hidden units, (2) the norm penalty, and (3) the
learning rate. The hyperparameter tuning process involves the
following steps:

1. Set a combination of hyperparameters;
2. Train the model on a portion of the data set reserved for that

purpose (the training set);
3. Observe the loss (i.e., error) on the remainder of the data set

(the validation set). Therefore, we test the model capacity on
a portion of the data not used to train it;

4. Repeat steps 1 through 3 with different combinations of
hyperparameters, and keep the combination that leads to the
lowest loss in the validation set.

As the number of hyperparameters and their range grow, the
search space becomes exponentially complex, and tuning the
models manually or by grid-search becomes impractical.
Bayesian optimization for hyperparameter tuning provides
hyperparameters (step 1) iteratively based on previous perfor-
mance (Shahriari, Swersky, Wang, Adams, & De Freitas,
2015). We use Bayesian optimization to search the
hyperparameter space for our model extensively. In our
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experience, this approach proves far superior to the alternatives
(i.e., manual or grid search). We provide more details on the
Bayesian optimization approach for hyperparameter tuning in
Web Appendix 1 and report computational considerations in
Web Appendix 2.

Next, we present two empirical applications where we
compare the performance of the LSTM model against the
performance of more traditional – and sometimes much more
complex benchmark models.

Empirical Application #1

Introduction

LSTM neural networks do not rely on feature engineering.
In complex settings (e.g., multidimensional data with inter-
sequence and inter-temporal interactions), this is a significant
advantage over hand-crafted, traditional models.

In contrast to the second application, which will offer a more
realistic context, the first application presents the most
straightforward proof of concept imaginable. The data tracks
only two variables over time: whether a charity has solicited its
contacts during a specific period (0/1), and whether they
donated (0/1). The study follows the classic firm solicitation–
customer reaction paradigm used extensively in prior research
in direct marketing (Bult & Wansbeek, 1995; Colombo &
Jiang, 1999; Donkers, Paap, Jonker, & Franses, 2006;
Malthouse, 1999; Van Diepen et al., 2009).

The data consist of the donation and solicitation histories of
6,134 donors over 9 years. These donors were acquired by the
charitable organization over the first 7 years, followed by an
additional year of observations so that even the most recent
donors have at least 1 year of historical data on which we base
our model predictions. We depict the data structure in Fig. 4.

We hypothesize that the firm is interested in predicting
donors' monthly activity (i.e., will this donor be donating
during the upcoming month?). Donations are highly cyclical
with some months receiving more donations (e.g., December)
and some months receiving less (e.g., February), and compar-
ing model performance on any specific month may be
misleading. Consequently, we repeat the exercise for 12
consecutive months, each representing a stand-alone prediction
Fig. 4. The data set consists of 6,134 donors acquired over 7 years, followed by an ad
donor has between 1 and 8 years of data available, plus 1 year reserved for the hold
that incorporates all prior data available up to that point in time.
Predictions are not sequential; we do not incorporate past
predictions into the model calibration at any stage. In essence,
we simulate the firm's modeling efforts to predict its donors'
behaviors, where the firm repeats the model calibration 12
times per year, each time 1 month apart.

We first test the performance of the model for January of the
9th year of data. Next, we incorporate the actual solicitations
and donations in January into the calibration data to predict
donations in February. We predict responses for February of
the 9th year and continue this process for the remaining months
of the 9th year. We test the performance of our model over 12
successive monthly predictions to demonstrate that the
performance is not happenstance to the particular month
under consideration, such as predicting behaviors during an
active month (e.g., December) or a much less active one (e.g.,
August). Therefore, we test the model on a total of 12
independent predictive tasks over 6,134 donors, for a total of
73,608 predictions. Note that this setting does not rely on any
look-ahead, and each prediction is made independently of the
previous ones. We illustrate the rolling process in Fig. 5.

Benchmark Models

To choose our benchmark models, we consulted publica-
tions in direct marketing (e.g., Malthouse, 1999; Roberts &
Berger, 1999), spoke with experts and executives of charity
organizations that use direct mailings, and referred to
discussions in marketing academia on the industry standards
for direct mailing response models (Gönül, Kim, & Shi, 2000).
The industry typically uses a penalized logit/probit model with
a binary dependent variable (donation/no donation) and RFM
variables along with seasonality predictors as independent
variables. We follow a similar approach and use a penalized
logistic regression model with hand-crafted features as the
benchmark model, against which we will compare the
performance of the LSTM model. To limit the risk of
overfitting, we also add regularization to the logistic regression
benchmark model, as we do for the LSTM model. The elastic-
net regularization combines the L1 and L2 regularization in an
effective way to prevent overfitting (Zou & Hastie, 2005). For
the penalized logit benchmark model, we use elastic-net
ditional 8th year of observations, and a 9th year to validate the predictions. Each
out sample.



Fig. 5. Once we obtain the predictions for 1 month, we incorporate the actual solicitations and donations observed for that month in the calibration data set, we re-
calibrate the model, and obtain predictions for the next month. We continue this process for an entire year.
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regularization, with the contribution of the norm penalty set by
cross-validation using glmnet (Friedman, Hastie, & Tibshirani,
2009).

As an additional benchmark, we test the random forest
model, an ensemble learning method (Breiman, 2001). Here we
keep the number of trees to grow at 128 and tune the number of
variables randomly sampled as candidates at each split (Oshiro,
Perez, & Baranauskas, 2012).

The features are listed in Table 1. The model has a total of
24 features, plus an intercept, for a total of 25 parameters to
estimate.

As illustrated in Fig. 3, an LSTM model makes as many
predictions as there are timesteps in the calibration data: the
data from period 1 to N is entered sequentially in the model as
predictors, and the model predicts donations for periods 2 to
N + 1. The predictions for periods 2 to N are used to compute
the prediction errors and calibrate the model, whereas the
prediction for period N + 1 is the metric of interest that we use
ex-post to measure the actual predictive accuracy of the model.

In the interest of comparison fairness, we use a similar
approach with the benchmark model. Therefore, if an
individual has 30 months of observations, 29 observations
(one for each month) are encoded—with their corresponding
features—in the calibration data and estimated to fit the
benchmark model, each with one more month of data than the
preceding.
6 Since, by definition, the null model (i.e., random predictions) achieves a lift
of 1, the improvement in lift between two models is computed as (liftA - 1)/
(liftB - 1).
Results

We compare the performance of the LSTM and the
benchmark models for 12 successive months. One of the most
managerially relevant success metrics is the lift of the model.
Analysts routinely use lift charts to assess the performance of
response models in direct marketing (Kuhn & Johnson, 2013;
Ling & Li, 1998; Malthouse, 1999). For example, if a direct
marketer wants to target m of n possible customers, there are
ðnCmÞ possible ways to pick the customers to solicit. In direct
marketing campaigns, where the organization is interested in
sending mailings to a selected fraction of its customer base, the
lift is a useful and popular metric, since it assesses the
performance of a response model in its capacity to select the
most responsive customers.

To evaluate the performance of a model on the lift chart for a
particular mailing occasion, we arrange the donors in
descending order by the predicted donation probability. For a
non-informative baseline, X% of donors would contain X% of
the donations, i.e., 10% of donors selected randomly would
contain 10% of all donations. However, if the model is
informative and ranks donors effectively, the top 10% of the
donors may account for, say, 36% of the total donations,
thereby giving a lift of 3.6. If a direct marketer wants to target
10% of the customer base, he/she would pick the top decile of
the customer base (ranked on model prediction) and would
predict the performance of the said campaign by calculating the
lift at 10%.

Note that the null model, with totally random recommenda-
tions, achieves a lift of 1. We take this into account while
calculating the improvement in lift for the LSTM model over
the benchmark models.

To evaluate the performance of the LSTM model in the
direct marketing context, we report the lifts of the LSTM and
benchmark models (a logistic regression model with elastic-net
regularization, and a random forest model) at 1%, 5%, 10%,
and 20% in Table 2.

The logit (resp., random forest) model provides an
average lift at 5% of 5.33 (resp., 5.42) over 12 independent
predictive tasks. In comparison, the LSTM model, which
does not rely on domain knowledge or feature engineering,
and uses the raw data as predictors, achieves an average lift
at 5% of 6.48. The LSTM model, therefore, provides a
+26.60% (resp., +24.05%) improvement6 over the logit
model (resp. random forest).

The logit model performs remarkably well at high lift values
(i.e., 20%), whereas the random forest model shines at lower lift
values (lift at 1%). This result might suggest that the best
traditional model to deploy depends on the degree of targeting
the analyst seeks. Random forest models are particularly good
at identifying tiny niche of super-responsive donors, and
therefore are well suited for ultra-precise targeting. Logit
models generalize well. Hence, they appear more appropriate to
target wider portions of the donor base.

Interestingly, the LSTM model beats both benchmark model
across the board and performs well at all lift levels.

For completeness, we report additional metrics, such as
RMSE, LogLoss, Precision, Recall, and F-measure in Table 3.
The LSTM model achieves superior results on these metrics as
well. On average, the logit (resp., random forest) model suffers
from an RMSE +1.33% (resp., +1.07%) higher than the LSTM
model, as well as a LogLoss +2.11% (resp. +74.88%) higher.



Table 1
Description of the features used in the first empirical application. The numbers in brackets indicate the exact number of features per indicator.

Category Features

Recency of donation (2) Donors who gave recently are more likely to support further the organization than individuals who have lapsed for an
extensive period. However, donors who donated barely a few weeks ago might not be ready to donate again in the
immediate future. This inverted u-shape relationship between recency and loyalty is captured tentatively by a linear
feature and its corresponding log-transform.

Frequency of donation (2) Individuals who donated many times in the past are more likely to remain loyal in the future. The relationship between
donation frequency and loyalty is, however, complex and nonlinear. Fundraising managers confirmed that going from
one to two donations is a giant leap, whereas going from ten to eleven is less meaningful. The benchmark models
capture the nonlinearity between frequency and loyalty by a linear feature and its corresponding log-transform

Recency of solicitation (2) Solicitations tend to quickly generate a peak in donations, followed by a long tail (Basu, Basu, & Batra, 1995). To
capture this nonlinear relationship between the sending of a solicitation and its responses, we include the recency of
the latest solicitation sent to the donor, as well as its log-transform, as model features.

Frequency of solicitations (2) The number of solicitations sent to a donor is a strong indicator of how confident the organization is in the generosity
potential of that individual. Many accumulated solicitations also communicate the organization's pressing needs to the
donor base, and therefore may positively influence their decisions to support the organization in the future. Therefore,
we introduce both the absolute number of solicitations sent since the beginning -and its log-transform- as model
features.

Month (11) Some months (e.g., November, December, January) are more favorable to fundraising activities than others (e.g.,
February, August). We encode each month (minus one for identification purposes) as dummy variables.

Donation same month last year (1) One of the strongest predictors available in this context is whether a donor has donated during the same period a year
prior. Some donors have idiosyncratic donation patterns that this feature captures well.

Solicitation same month last year (1) For completeness, we also capture whether the donor has been solicited in the same period a year prior.
Average time between donations (1) The average time between donations can be used to capture changes in the frequency of donation over time.
Average time between solicitations (1) The average time between solicitations can be used to capture changes in the frequency of solicitation over time.
Dummy for missing solicitation recency (1) When the customer is newly acquired and has not received any solicitations, the recency of solicitation cannot be

calculated; the average time between solicitations either. We replace these invalid values with a dummy to avoid any
confounding effects.
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The detailed results for each of the 12 independent tasks are
available in Web Appendix 3.
Table 2
Average lift at 1%, 5%, 10%, and 20% for the LSTM model and the benchmark
models (logit and random forest) over 12 independent predictive tasks (one for
each month in the holdout dataset). On average, the LSTM model achieves
a + 26.60% (resp., +24.05%) improvement in the lift at 5% compared to the
logit (resp., random forest) model.

Lift 1% Lift 5% Lift 10% Lift 20%
Empirical Application #2

Objective

While an LSTM model does not depend on the analyst's
ability to craft meaningful model features, traditional bench-
marks do heavily rely on human expertise. Consequently, when
an LSTM model shows superior results over a traditional
response model—as we have shown in the previous illustration
—we cannot ascertain whether it is due to the superiority of the
LSTM model, or to the poor performance of the analyst who
designed the benchmark model.

To alleviate that concern, we asked 297 graduate students in
data science and business analytics from one of the top-ranked
specialized masters in the world to compete in a marketing
analytics prediction contest.7 Each author participated and
submitted multiple models as well, for a total of 816
submissions. With the LSTM model competing against such a
wide variety of human expertise and modeling approaches, it
becomes easier to disentangle the model performance from its
human component.
7 At the time of writing, the Master in Data Sciences & Business Analytics,
jointly organized by the ESSEC Business School and CentraleSupélec, was
ranked #3 worldwide by QS World University Rankings.
Problem Description

The participants' goal was to predict who was likely to
donate to a charity for one of its specific fundraising
campaigns, and how much money they would likely give. By
combining these two predictions (likelihood × amount),
contestants would obtain an expected revenue from each
solicited individual. Since every solicitation cost 2 € (a fake,
unrealistic figure used for the purpose of the exercise),
soliciting an individual with expected revenue of less than 2 €
(e.g., someone who had 5% chances of giving 17 €, for an
expected revenue of 85 cents) for that campaign was, therefore,
deemed unprofitable.

The data set came from a direct marketing campaign of
123,672 solicited donors. The participants had access to a
calibration data of 61,928 individuals for whom we provided
both the responses (yes/no) and donation amount to the
Logit 11.460 5.328 3.951 2.731
Random Forest (RF) 13.053 5.417 3.626 2.434
LSTM 13.903 6.479 4.305 2.778
LSTM vs. Logit +23.36% +26.60% +12.00% +2.75%
LSTM vs. RF +7.06% +24.05% +25.88% +24.03%



Table 3
Average Root Mean Squared Error (RMSE), LogLoss, Precision, Recall, and F-measure for the LSTM model and the benchmark models (logit and random forest)
over 12 predictive tasks (one for each month). To calculate the measures of Precision, Recall, and F-measure, we label predictions <0.5 as “negative” and ≥ 0.5 as
“positive”. The LSTM model outperforms the benchmark models across the board.

RMSE LogLoss Precision Recall F-measure

Logit 0.198 0.167 0.632 0.068 0.122
Random Forest (RF) 0.197 0.286 0.667 0.095 0.165
LSTM 0.195 0.164 0.710 0.103 0.175
Logit vs. LSTM +1.3% +2.1% A positive value indicates that RMSE, Logloss errors are more

substantial with the benchmark modelsRF vs. LSTM +1.1% +74.9%
LSTM vs. Logit A positive value indicates that LSTM

achieves superior performance
+12.3% +51.5% +43.4%

LSTM vs. RF +6.4% +8.4% +6.1%
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campaign. The holdout data consisted of the remaining 61,744
individuals who had been solicited, but for whom the responses
were unknown to the data analysts.

Participants were asked to submit a file of 61,744 individual
decisions indicating whether the charity should solicit or not
each contact in the holdout data. If the participant indicated a
solicitation for a particular individual, the charity endured a
solicitation cost of 2 €, and we added the donation made by that
individual to the gross revenue of the campaign, if any. If the
participant indicated the individual should not be solicited
(because his expected revenue was inferior to the threshold of 2
€), no solicitation cost was endured. However, donations made
by the unsolicited individuals on that fundraising campaign
were deemed to have never happened. For the purpose of this
exercise, we assumed that no individual was going to donate on
that campaign if the charity did not solicit him or her. We
illustrate this process in Table 4.

The contestants' objective was to maximize the net financial
performance of the campaign. The instructor informed them that
finding the right model features, and avoiding model overfitting,
were vital for this assignment. All students followed several
advanced classes prior, and were trained in marketing analytics,
feature engineering, SQL queries, and predictive modeling
Table 4
Observed donations for 10 individuals in the holdout sample (2nd column),
hypothetical contestant's decisions to solicit these individuals or not (3rd
column), and simulated marketing costs and gross revenue for that campaign
(4th and 5th columns). Note that the third individual (in gray) gave 10 € in the
actual campaign, but her donation is not added to the contestant's financial
results due to the absence of solicitation.
techniques. They had also completed another assignment on the
same charity database and were, therefore, familiarized with the
organizational context of the exercise.

Each participant was given up to three trials. They submitted
their recommendations (a text file of 61,744 yes/no decisions)
through an online interface, and the website reported their net
financial results in real-time (gross revenue, minus solicitation
costs). The website provided no information about individual
donations.

At the end, only the contestants' top performance was
retained and compared to the financial results of their cohort.
The best performing contestant received 20/20 for the
assignment, which constituted a significant fraction of the
course's overall grade. The contestant with the worst
performance received 8/20 (a failing grade). All others
were graded linearly based on their rank in the cohort, with a
grade of 14/20 for the students in the 50th percentile.
Students who managed to achieve a higher performance than
the instructor—who followed the same instructions, and
submitted recommendations of his own—received a bonus
point on the entire course. The exercise is, therefore, strongly
incentive-aligned.
Database

The database included the complete donation history of
the 123,672 individuals originally solicited for the
fundraising campaign, for a total of 1,066,376 one-off
donations, and 1,364,500 automatic deductions (i.e., auto-
mated monthly payments by credit card or bank wire). Data
specified to which campaign the donations were linked to, if
any, as well as the mean of payment (e.g., check, credit card,
bank wire, cash) and the channel (Web donation or not). The
most recent donor was acquired 2 weeks before the launch of
the campaign; the most ancient made her first donation
26 years prior.

The database also contained the most recent 10 years of
solicitation history, for a total of 4,365,405 solicitations (earlier
solicitations were not recorded in the database). It specified
whether it was an online (i.e., email) or an offline campaign.
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Notice that a donor could be solicited by email (online) but
decide to donate by check (offline).

Besides, each contact's ZIP code, first name and prefix (Mr,
Mrs., Dr., etc.) were known.
Benchmark Models

We assigned this exercise to 6 classes (i.e., cohorts) over 3
years, for a total of 299 graduate students. Two never submitted
their assignment. Thirty participants made errors that prevented
them from competing fairly,8 and we do not report their results.
For the remaining 267 graduate students, we only report their
best trials.

The two authors competed as well and submitted three
recommendations each. Following experts' recommendations,
we additionally retained the features of the authors' best-
performing model and fed them into random forests and XG
Boost models as well. The authors, therefore, submitted a total
of four models to the competition, for a total of 271 entries.

The net financial results of the contestants ranged from
190,239 € to 225,063 €, with an average of 210,144 €, and a
median of 211,649 €. We report the distribution in Fig. 6.

The authors achieved a performance of 218,030 € (author
#1), 220,679 € (author #2 and course instructor), 217,378 €
(random forest) and 215,093 € (XG Boost). Out of the 267
students, 11 managed to outperform the instructor, who had
20 years of experience in fundraising analytics and had
developed professional scoring models for, among others, the
WWF, the Salvation Army, and the Red Cross. We take that
result as a strong signal that the students took the assignment
seriously and a testimony to the quality of their work.

Although several contestants explored advanced models,
such as feedforward neural networks, random forests, or
support vector machines, these more elaborate models appeared
to suffer from overfitting. Among the top 20 results, all used
simple logistic (for the response model) and linear regressions
(for the amount model) with lasso (and/or ridge) penalties. All
top performers developed a wide variety of advanced features.

Table 5 reports the most common features designed and
used by the contestants in their modeling efforts. The number
of features per model ranged from six to several hundred.
LSTM Model

For this exercise, the authors developed two separate LSTM
models. The first one predicted the likelihood that each donor
was going to respond favorably to the solicitation (0/1), and we
calibrated it on the entire calibration data (N = 61,928). The
second LSTM model predicted the donation amount in case of
donation, and we calibrated it on the individuals who donated
in the calibration data (N = 6,456). Both models were then
8 For instance, students (a) made a typo in the reference dates used to compute
recency, (b) predicted log(amount), but forgot to exponentiate their predictions
to obtain the actual amount, (c) made coding errors and mixed up the contacts
order in their output file, resulting in what were essentially random
recommendations, etc.
applied to the holdout data and combined to obtain expected
revenue from a solicitation.

For the purpose of sequence generation, we grouped the data
in bimonthly increments, for a total of 24 steps per calendar
year (e.g., January 1–15 is period 1, January 16–31 is period 2).
Both LSTM models used the same sequences of raw indicators
as inputs, namely:
1. Online solicitation (0/1)
2. Offline solicitation (0/1)
3. Online, one-off donation (0/1)
4. Online, automatic deduction (0/1)
5. Offline, one-off donation (0/1)
6. Offline, automatic deduction (0/1)
7. One-off donation amount (0/log(amount))
8. Automatic deduction amount (0/log(amount))

For instance, if a contact donates 50 € by check on February 4,
and is solicited by email on February 11, the sequence data for
that period (3rd period of the year) indicates “online solicitation =
1,” “offline, one-off donation = 1,” and “one-off donation amount
= log(50),” with all the other indicators equal to 0.

The only differences between the two independent LSTM
models are: (a) the data we use to train the models and (b) the
output functions. For the response model, the output is
processed through a sigmoid function to ensure a probability
between 0 and 1; for the amount model, the output is
exponentiated to guarantee an amount prediction in the positive
domain.

The authors' first trial mixed an LSTM model for response
prediction with a simple linear regression for the amount model
and achieved a net financial performance of 223,004 €. The
second trial implemented an LSTM model for the amount
prediction as well. Combined with the previous LSTM
response model, it achieved a net performance of 224,233 €.
While the first two trials used a simple grid search for
hyperparameter turning, we deployed a full-blown Bayesian
optimization search for the third trial. Still, results did not
improve, demonstrating that a simple grid search was sufficient
to achieve optimal results, at least in this application.

Competing against 271 benchmark models (four of which
were designed by the authors), the full LSTM model achieved
third place. A net result of 224,233 € is 2.01 standard
deviations above the contestants' average performance and
0.37% (0.118 s.d.) below the top-performing entry. We
show the performance of the LSTM against the 271 entries
in Fig. 7.

Applications of LSTM Neural Networks in Marketing

Though we set our studies in a direct marketing context, LSTM
neural networks can provide a solution to the general class of
prediction tasks that involve panel data. We foresee that, since
panel data is ubiquitous in marketing, LSTM neural networks can
find widespread applications in marketing academia and practice.
We discuss some possible applications below.



Fig. 6. Performance distribution (best trials) of the 271 entries in the predictive modeling competition. Results ranged from 190,239 € to 225,063 €, with an average of
210,144 €. Sixty entries felt between 212,000 € and 214,00 € (mode of the distribution.)

Table 5
Description of the most common features used by the 269 contestants. The number of features ranged from six to several hundred.

Category Features

Recency Date of last donation. Common variants included mathematical transformations (log-transform, square root, power), and channel-specific
recency (last online donation, last offline donation.)

Frequency Number of donations. Common variants included mathematical transformations (log-transform, square root, power), channel-specific
frequencies (number of online donations, number of offline donations), and time frames (e.g., number of donations over the last N years.)

Seniority Date of first donation, i.e., date of donor acquisition. Common variants included mathematical transformations (log-transform, square root,
power) and binary indicators indicating the channel (online, offline) and the type of first donation (one-off donation, automatic deduction.)

Interactions Interaction terms between the aformentionned indicators, most commonly recency × frequency.
Amount Donation amount. Common variants included moments (minimum, maximum, average, median amounts), channel (online vs. offline), mode

of payment (e.g., check, credit card), and period under consideration (e.g., whole history of donations, N most recent donations, N most recent
years). Some students experimented with exponentially-weighted moving averages.

Time gaps Gaps between observed donations (or solicitations). Common variants include moments (minimum, maximum, average, median time gaps)
and channel (online vs. offline.)

Time gap × recency Several students (and the instructor) included a relative measure of time gap compared to contact's recency. For instance, an average time gap
between donations of 300 days, and recency of 150 days, gives a ratio of 0.5. A ratio close to 1 indicates perfect timing for a solicitation. A
value above 1 indicates the donor might have churned. Variants included the introduction of standard deviations in the computations
(confidence interval) and mathematical transformations (log-transform, square root.)

Seasonality The campaign of interest was launched in late June, which is an unusual timing. Additional features included the likelihood of making a
donation during the summer, the likelihood of responding to past campaigns launched in June, etc.

Response rate Ratios of donations vs. solicitations, either over the entire contact history, over a recent period (e.g., three years), or over specific solicitations
(e.g., offline solicitations, solicitations sent in June, etc.)

Demographics Prefix, ZIP codes (e.g., binary indicators for each of the most common ZIP codes in the contact list), departments (the equivalent of States,
inferred from ZIP codes), etc.

Advanced
demographics

Some contestants linked the donors' ZIP codes to publicly-available Census bureau data to infer education attainment, income, number of
children, age, etc., or have linked donors' first names to the average age pyramid of said first names in the population to infer donors' age.

Automatic
deductions

While the fundraising campaign was targeting one-off donations, the fact that some solicited contacts were already under automatic deductions
(i.e., monthly donations) was informative. Common features included binary indicators (e.g., contact currently or previously under automatic
deductions), as well as automatic deduction recency, frequency, seniority, and amounts.
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Fig. 7. Performance distribution (best trials) of the 271 entries in the predictive modeling competition, from worst (left) to best (right) performance. The LSTMmodel,
which does not rely on advanced feature engineering, and instead uses raw data to make its predictions, achieved third place.
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Brand Choice and Market Share Forecasting Using Scanner
Data

Demand forecasting for products within a category is a
critical task for retailers and brand managers alike. The
multinomial logit model (MNL) is commonly used to predict
brand choice and market share using marketing-mix and loyalty
variables (Guadagni & Little, 1983). Artificial feedforward
neural networks (ANN) have also been shown to effectively
predict household brand choices, as well as brand market shares
(Agrawal & Schorling, 1996). Since brand choices can be
modeled as sequential choices, and data complexity increases
exponentially with the number of brands (with interaction
effects), LSTM neural networks offer suitable alternatives.

Similar to our studies, we could encode brand choices and
the decision environment as we encoded solicitations and
donations: as a multidimensional vector. We conjecture that
testing the performance of LSTM neural networks in the
context of brand choices would constitute an exciting
replication area.

Churn Prediction

Customer retention is crucial in numerous industries, such as
telecom, credit cards, or online gambling. A comprehensive
stream in the literature focuses on predicting customers who are
likely to defect/churn (e.g., Ascarza, Iyengar, & Schleicher,
2016; Coussement & De Bock, 2013). Churn prediction models
can be “single future period” or “time-series” (Blattberg et al.,
2008), where churn is predicted either for a specific period of
interest (Lemmens & Croux, 2006; Neslin, Gupta, Kamakura,
Lu, & Mason, 2006) or over an extended period and multiple
steps (Blattberg et al., 2008). The LSTM neural network
typology is well-suited for modeling churn, especially in time-
series format. However, its performance against standard churn
prediction models remains an avenue for further research.

Clickstream Data

Online retailers routinely use clickstream data to predict
online customer behavior. These retailers observe the
clickstream data from a panel of customers and use the history
of customers' browsing behavior to make predictions about
browsing behaviors, purchasing propensities, or consumer
interests. Marketing academics have leveraged the clickstream
data of a single website to model the evolution of website-visit
behavior (Moe & Fader, 2004a) and purchase-conversion
behavior (Moe & Fader, 2004b). However, observing the
clickstream data from a single website usually does not give a
complete picture as customers often visit multiple websites
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while shopping. Park and Fader (2004) leveraged internet
clickstream data from multiple websites, such that relevant
information from one website could be used to explain behavior
on the other. The LSTM neural network would be well-suited
for modeling online customer behavior across multiple
websites since it can naturally capture inter-sequence and
inter-temporal interactions from multiple streams of clickstream
data without growing exponentially in complexity.

Technical Considerations

It would be presumptuous to claim that LSTM models offer
an ideal, one-fit-all solution to panel data analytics. In
particular, the analyst is invited to be mindful of the following
challenges.

First, hyperparameter tuning is not a trivial task. While a
simple grid search may be sufficient to achieve optimal
performance, Bayesian optimization may be required on
occasion.

Second, as in all deep learning models, overfitting is a
constant concern. Many solutions have been proposed, and can
even be combined together, such as early stopping, L1
regularization, L2 regularization, and dropout (Michelucci,
2018). Unfortunately, it is not clear that one approach will
systematically provide optimal results, irrespective of the data
structure or network architecture.

Third, while LSTM models offer a markedly improved
solution to the problem of exploding gradients (over vanilla
RNN models), they are not guaranteed to be shielded from it
entirely. Facing such an issue, the analyst might need to rely on
computational tricks, such as gradient clipping (Bengio, 2012),
gradient scaling, or batch normalization (Bjorck, Gomes,
Selman, & Weinberger, 2018).

Finally, the field of deep learning in general, and recurrent
neural networks, in particular, is evolving rapidly. Many
alternative model specifications and network architectures
offer the promises of improvements over vanilla LSTM models.
They have already been proven superior in some domains. Such
alternative specifications include Gated Recurrent Units,
BiLSTM (Siami-Namini, Tavakoli, & Namin, 2019), Multi-
Dimensional LSTM (Graves & Schmidhuber, 2009), Neural
Turing Machines (Graves, Wayne, & Danihelka, 2014),
Attention-Based RNN and its various implementations (e.g.,
Bahdanau, Cho, & Bengio, 2014; Luong, Pham, & Manning,
2015), or Transformers (Vaswani et al., 2017). It is not clear
that one architecture will lead systematically to the best
possible performance. Lacking benchmarking studies, the
analyst may be required to experiment with several models
(although, as demonstrated in this paper, a simple LSTM model
already provides excellent performance).

Conclusions

Ben Weber (2019) stated that “One of the biggest challenges
in machine learning workflows is identifying which inputs in
your data will provide the best signals [i.e., features] for
training predictive models. For image data and other
unstructured formats, deep learning models are showing large
improvements over prior approaches, but for data already in
structured formats, the benefits are less obvious” [italics
added].

In this paper, we have shown that recent neural network
architectures, traditionally used in natural language processing
and machine translation, could effectively do away with the
complicated and time-consuming step of feature engineering,
even when applied to highly structured problems such as
predicting the future behaviors of a panel of customers. We
apply the LSTM neural networks to predict customer responses
in direct marketing and discuss its possible application in other
contexts within marketing, such as market-share forecasting
using scanner data, churn prediction, or predictions using
clickstream data.

Martínez, Schmuck, Pereverzyev Jr., Pirker, and Haltmeier
(2020) used 274 features to predict customer behaviors in a
non-contractual setting. One of the authors, who has extensive
industry experience, has built predictive models with 600
features and more. Feature engineering is not only a time-
consuming process, it is also error-prone, complex, and highly
dependent on the analyst's domain knowledge (or, sometimes,
lack thereof). On the other hand, LSTM neural networks rely on
raw unsummarized data to predict customer behaviors and can
be scaled easily to very complex settings involving multiple
streams of data.

Feature engineering is not an obsolete skill. When model
explainability and controllability are important, a simpler
model with well-crafted features may be best (De Bruyn,
Viswanathan, Beh, Brock, & von Wangenheim, 2020), even at
the expense of slightly reduced model accuracy (Rudin, 2019).

We believe nonetheless that the ability of Recurrent Neural
Networks (RNN), and specifically Long-Short Term Memory
neural networks (LSTM), to dispense largely with this step,
while achieving superior performance, is a noteworthy
achievement that should resonate well with practitioners. This
finding is especially relevant, knowing that data scientists
spend about three-quarters of their time doing data-janitorial
work—collecting, transforming, and cleaning data.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.intmar.2020.07.002.
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